网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 脉冲耦合神经网络及应用(精)
分类
作者 马义德//绽琨//王兆浜
出版社 高等教育出版社
下载
简介
目录

Chapter 1 Pulse-Coupled Neural Networks

 1.1 Linking Field Model

 1.2 PCNN

 1.3 Modified PCNN

1.3.1 Intersection Cortical Model

1.3.2 Spiking Cortical Model

1.3.3 Multi-channel PCNN

 Summary

 References

Chapter 2 Image Filtering

 2.1 Traditional Filters

2.1.1 Mean Filter

2.1.2 Median Filter

2.1.3 Morphological Filter

2.1.4 Wiener Filter

 2.2 Impulse Noise Filtering

2.2.1 Description of Algorithm Ⅰ

2.2.2 Description of Algorithm Ⅱ

2.2.3 Experimental Results and Analysis

 2.3 Gaussian Noise Filtering

2.3.1 PCNNNI and Time Matrix

2.3.2 Description of Algorithm Ⅲ

2.3.3 Experimental Results and Analysis

 Summary

 References

Chapter 3 Image Segmentation

 3.1 Traditional Methods and Evaluation Criteria

3.1.1 Image Segmentation Using Arithmetic Mean

3.1.2 Image Segmentation Using Entropy and Histogram

3.1.3 Image Segmentation Using Maximum Between-cluster Variance

3.1.4 Objective Evaluation Criteria

 3.2 Image Segmentation Using PCNN and Entropy

 3.3 Image Segmentation Using Simplified PCNN and GA

3.3.1 Simplified PCNN Model

3.3.2 Design of Application Scheme of GA

3.3.3 Flow of Algorithm

3.3.4 Experimental Results and Analysis

 Summary

 References

Chapter 4 Image Coding

 4.1 Irregular Segmented Region Coding

4.1.1 Coding of Contours Using Chain Code

4.1.2 Basic Theories on Orthogonality

4.1.3 Orthonormalizing Process of Basis Functions

4.1.4 ISRC Coding and Decoding Framework

 4.2 Irregular Segmented Region Coding Based on PCNN

4.2.1 Segmentation Method

4.2.2 Experimental Results and Analysis

 Summary

 References

Chapter 5 Image Enhancement

 5.1 Image Enhancement

5.1.1 Image Enhancement in Spatial Domain

5.1.2 Image Enhancement in Frequency Domain

5.1.3 Histogram Equalization

 5.2 PCNN Time Matrix

5.2.1 Human Visual Characteristics

5.2.2 PCNN and Human Visual Characteristics

5.2.3 PCNN Time Matrix

 5.3 Modified PCNN Model

 5.4 Image Enhancement Using PCNN Time Matrix

 5.5 Color Image Enhancement Using PCNN

 Summary

 References

Chapter 6 Image Fusion

 6.1 PCNN and Image Fusion

6.1.I Preliminary of Image Fusion

6.1.2 Applications in Image Fusion

 6.2 Medical Image Fusion

6.2.1 Description of Model

6.2.2 Image Fusion Algorithm

6.2.3 Experimental Results and Analysis

 6.3 Multi-focus Image Fusion

6.3.1 Dual-channel PCNN

6.3.2 Image Sharpness Measure

6.3.3 Principle of Fusion Algorithm

6.3.4 Implementation of Multi-focus Image Fusion

6.3.5 Experimental Results and Analysis

 Summary

 References

Chapter 7 Feature Extraction

 7.1 Feature Extraction with PCNN

7.1.1 Time Series

7.1.2 Entropy Series

7.1.3 Statistic Series

7.1.4 Orthogonal Transform

 7.2 Noise Image Recognition

7.2.1 Feature Extraction Using PCNN

7.2.2 Experimental Results and Analysis

 7.3 Image Recognition Using Barycenter of Histogram Vector

 7.4 Invariant Texture Retrieval

7.4.1 Texture Feature Extraction Using PCNN

7.4.2 Experimental Results and Analysis

 7.5 Iris Recognition System

7.5.1 Iris Recognition

7.5.2 Iris Feature Extraction Using PCNN

7.5.3 Experimental Results and Analysis

 Summary

 References

Chapter 8 Combinatorial Optimization

 8.1 Modified PCNN Based on Auto-wave

8.1.1 Auto-wave Nature of PCNN

8.1.2 Auto-wave Neural Network

8.1.3 Tristate Cascading Pulse Couple Neural Network

 8.2 The Shortest Path Problem

8.2.1 Algorithm for Shortest Path Problems Based on TCPCNN

8.2.2 Experimental Results and Analysis

  8.3 Traveling Salesman Problem

8.3.1 Algorithm for Optimal Problems Based on AWNN

8.3.2 Experimental Results and Analysis

 Summary

 References

Chapter 9 FPGA Implementation of PCNN Algorithm

 9.1 Fndamental Principle of PCNN Hardware Implementation

 9.2 Altera DE2-70 Implementation of PCNN

9.2.1 PCNN Implementation Using Altera DE2-70

9.2.2 Experimental Results and Analysis

 Summary

 References

Index

内容推荐

Applications of Pulse-Coupled Neural Networks explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields.

This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science.

编辑推荐

本书是介绍脉冲耦合神经网络在图像滤波、图像分割、图像编码、图像增强、图像融合、特征提取和优化组合等方面的应用。书中包含了具体的图像处理算法、应用实例以及源代码,帮助读者建立脉冲耦合神经网络在图像处理中的应用。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/8 23:56:27