高性能计算机上的数值线性代数(国际著名数学图书影印版)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 高性能计算机上的数值线性代数(国际著名数学图书影印版)
分类 电子书下载
作者 (美)冬格拉
出版社 清华大学出版社
下载 暂无下载
介绍
编辑推荐

The book is divided into five major parts: (1) introduction to terms and concepts, including an overview of the state of the art for high-performance computers and a discussion of performance evaluation (Chapters 1-4); (2) direct solution of dense matrix problems (Chapter 5); (3) direct solution of sparse systems of equations (Chapter 6); (4) iterative solution of sparse systems of equations (Chapters 7-9); and (5) iterative solution of sparse eigenvalue problems (Chapters 10-11). Any book that attempts to cover these topics must necessarily be somewhat out of date before it appears, because the area is in a state of flux. We have purposely avoided highly detailed descriptions of popular machines and have tried instead to focus on concepts as much as possible;nevertheless, to make the description more concrete, we do point to specific computers.

目录

About the Authors

Preface

Introduction

1 High-Performance Computing

 1.1 Trends in Computer Design

 1.2 Traditional Computers and Their Limitations

 1.3 Parallelism within a Single ProceSsor

1.3.1 Multiple Functional Units

1.3.2 Pipelining

1.3.3 Overlapping

1.3.4 RISC

1.3.5 VLIW

1.3.6 Vector Instructions

1.3.7 Chaining

1.3.8 Memory-to-Memory and Register-to-Register Organizations

1.3.9 Register Set

1.3.10 Stripmining

1.3.11 Reconfigurable Vector Registers

1.3.12 Memory Organization

 1.4 Data Organization

1.4.1 Main Memory

1.4.2 Cache

1.4.3 Local Memory

 1.5 Memory Management

 1.6 Parallelism through Multiple Pipes or Multiple Processors

 1.7 Message Passing

 1.8 Virtual Shared Memory

1.8.1 Routing

 1.9 Interconnection Topology

1.9.1 Crossbar Switch

1.9.2 Timeshared Bus

1.9.3 Ring Connection

1.9.4 Mesh Connection

1.9.5 Hypercube

1.9.6 Multi-staged Network

 1.10 Programming Techniques

 1.11 Trends: Network-Based Computing

2 Overview of Current High-Performance Computers

 2.1 Supercomputers

 2.2 RISC-Based Processors

 2.3 Parallel Processors

3 Implementation Details and Overhead

 3.1 Parallel Decomposition and Data Dependency Graphs

 3.2 Synchronization

 3.3 Lead Balancing

 3.4 Recurrence

 3.5 Indirect Addressing

 3.6 Message Passing

3.6.1 Performance Prediction

3.6.2 Message-Passing Standards

3.6.3 Routing

4 Performance: Analysis, Modeling, and Measurements

 4.1 Amdahl's Law

4.1.1 Simple Case of Amdahl's Law

4.1.2 General Form of Amdahl's Law

 4.2 Vector Speed and Vector Length

 4.3 Amdahl's Law--Parallel Processing

4.3.1 A Simple Model

4.3.2 Gustafson's Model

 4.4 Examples cf (r∞, n1/2)-values for Various Computers

4.4.1 CRAY J90 and CRAY T90 (One Processor)

4.4.2 General Observations

 4.5 LINPACK Benchmark.

4.5.1 Description cf the Benchmark

4.5.2 Calls to the BLAS

4.5.3 Asymptotic Performance

5 Building Blocks in Linear Algebra

 5.1 Basic Linear Algebra Subprograms

5.1.1 Level 1 BLAS

5.1.2 Level 2 BLAS

5.1.3 Level 3 BLAS

 5.2 Levels of Parallelism

5.2.1 Vector Computers

5.2.2 Parallel Processors with Shared Memory

5.2.3 Parallel-Vector Computers

5.2.4 Clusters Computing

 5.3 Basic Factorizations of Linear Algebra.

5.3.1 Point Algorithm: Gaussian Elimination with Partial Pivoting

5.3.2 Special Matrices

 5.4 Blocked Algorithms: Matrix-Vector and Matrix-Matrix Versions

5.4.1 Right-Looking Algorithm

5.4.2 Left-Looking Algorithm

5.4.3 Crout Algorithm

5.4.4 Typical Performance of Blocked LU Decomposition

5.4.5 Blocked Symmetric Indefinite Factorization

5.4.6 Typical Performance of Blocked Symmetric Indefinite Factorization

 5.5 Linear Least Squares

5.5.1 Householder Method

5.5.2 Blocked Householder Method

5.5.3 Typical Performance of the Blocked Householder Factor-ization

 5.6 Organization of the Modules

5.6.1 Matrix-Vector Product

5.6.2 Matrix-Matrix Product

5.6.3 Typical Performance for Parallel Processing

5.6.4 Benefits

 5.7 LAPACK

 5.8 ScaLAPACK

5.8.1 The Basic Linear Algebra Communication Subprograms(BLACS)

5.8.2 PBLAS

5.8.3 ScaLAPACK Sample Code

6 Direct Solution of Sparse Linear Systems

 6.1 Introduction to Direct Methods for Sparse Linear Systems

6.1.1 Four Approaches

6.1.2 Description of Sparse Data Structure

6.1.3 Man!pulation of Sparse Data Structures

 6.2 General Sparse Matrix Methods

6.2.1 Fill-in and Sparsity Ordering

6.2.2 Indirect Addressing--Its Effect and How to Avoid It

6.2.3 Comparison with Dense Codes

6.2.4 Other Approaches

 6.3 Methods for Symmetric Matrices and Band Systems

6.3.1 The Clique Concept in Gaussian Elimination

6.3.2 Further Comments on Ordering Schemes

 6.4 Frontal Methods

6.4.1 Frontal Methods--Link to Band Methods and Numerical Pivoting

6.4.2 Vector Performance

6.4.3 Parallel Implementation of Frontal Schemes

 6.5 Multifrontal Methods .

6.5.1 Performance on Vector Machines

6.5.2 Performance on RISC Machines

6.5.3 Performance on Parallel Machines

6.5.4 Exploitation of Structure

6.5.5 Unsymmetric Multifrontal Methods

 6.6 Other Approaches for Exploitation of Parallelism

 6.7 Software

 6.8 Brief Summary

7 Krylov Subspaces: Projection

 7.1 Notation

 7.2 Basic Iteration Methods: Richardson Iteration, Power Method .

 7.3 Orthogonal Basis (Arnoldi, Lanczos)

8 Iterative Methods for Linear Systems

 8.1 Krylov Subspace Solution Methods: Basic Principles

8.1.1 The Ritz-Galerkin Approach: FOM and CG

8.1.2 The Minimum Residual Approach: GMRES and MINRES

8.1.3 The Petrov-Galerkin Approach: Bi-CG and QMR

8.1.4 The Minimum Error Approach: SYMMLQ and GMERR

 8.2 Iterative Methods in More Detail

8.2.1 The CG Method

8.2.2 Parallelism in the CG Method: General Aspects

8.2.3 Parallelism in the CG Method: Communication Overhead

8.2.4 MINRES

8.2.5 Least Squares CG

8.2.6 GMRES and GMRES(m)

8.2.7 GMRES with Variable Preconditioning

8.2.8 Bi-CG and QMR

8.2.9 CGS

8.2.10 Bi-CGSTAB

8.2.11 Bi-CGSTAB(e) and Variants

 8.3 Other Issues

 8.4 How to Test Iterative Methods

9 Preconditioning and Parallel Preconditioning

 9.1 Preconditioning and Parallel Preconditioning

 9.2 The Purpose of Preconditioning

 9.3 Incomplete L U Decompositions

9.3.1 Efficient Implementations of ILU(0) Preconditioning

9.3.2 General Incomplete Decompositions

9.3.3 Variants of ILU Preconditioners

9.3.4 Some General Comments on ILU

 9.4 Some Other Forms of Preconditioning

9.4.1 Sparse Approximate Inverse (SPAI)

9.4.2 Polynomial Preconditioning

9.4.3 Preconditioning by Blocks or Domains

9.4.4 Element by Element Preconditioners

 9.5 Vector and Parallel Implementation of Preconditioners

9.5.1 Partial Vectorization

9.5.2 Reordering the Unknowns

9.5.3 Changing the Order of Computation

9.5.4 Some Other Vectorizable Preconditioners

9.5.5 Parallel Aspects of Reorderings

9.5.6 Experiences with Parallelism .

10 Linear Eigenvalue Problems Ax=λx

 10.1 Theoretical Background and Notation

 10.2 Single-Vector Methods

 10.3 The QR Algorithm

 10.4 Subspace Projection Methods

 10.5 The Arnoldi Factorization

 10.6 Restarting the Arnoldi Process

 10.6.1 Explicit Restarting

 10.7 Implicit Restarting

 10.8 Lanczos' Method

 10.9 Harmonic Ritz Values and Vectors

 10.10 Other Subspace Iteration Methods

 10.11 Davidson's Method

 10.12 The Jacobi-Davidson Iteration Method

 10.12.1 JDQR

 10.13 Eigenvalue Software: ARPACK, P_ARPACK

 10.13.1 Reverse Communication Interface

 10.13.2 Parallelizing ARPACK

 10.13.3 Data Distribution of the Arnoldi Factorization .

 10.14 Message Passing

 10.15 Parallel Performance

 10.16 Availability

 10.17 Summary

11 The Generalized Eigenproblem

 11.1 Arnoldi/Lanczos with Shift-Invert

 11.2 Alternatives to Arnoldi/Lanczos with Shift-Invert

 11.3 The Jacobi-Davidson QZ Algorithm

 11.4 The Jacobi-Davidson QZ Method: Restart and Deflation

 11.5 Parallel Aspects

A Acquiring Mathematical Software

 A.1 netlib

A.1.1 Mathematical Software

 A.2 Mathematical Software Libraries

B Glossary

C Level 1, 2, and 3 BLAS Quick Reference

D Operation Counts for Various BLAS and Decompositions

Bibliography

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me