本书是一本适应当今运筹学发展趋势的优秀的综合性入门教材,主要特点是重视建模和算法的结合,引入了相关的建模工具以及用其进行模型开发的基本技巧。全书采用统一的理论框架,以简单的“改进搜索”思路贯穿始终,全面且循序渐进地演绎了各种优化算法和方法,包括传统的单纯形法、牛顿法、网络流算法以及各种启发式算法,使读者感受到每次引入的新算法都建立在以往算法的基础上,直观且逻辑性强,易于理解。本书收录了丰富的实际案例,并有大量上机习题,便于理论结合实践。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 运筹学--优化模型与算法(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | (美)拉丁 |
出版社 | 电子工业出版社 |
下载 | ![]() |
简介 | 编辑推荐 本书是一本适应当今运筹学发展趋势的优秀的综合性入门教材,主要特点是重视建模和算法的结合,引入了相关的建模工具以及用其进行模型开发的基本技巧。全书采用统一的理论框架,以简单的“改进搜索”思路贯穿始终,全面且循序渐进地演绎了各种优化算法和方法,包括传统的单纯形法、牛顿法、网络流算法以及各种启发式算法,使读者感受到每次引入的新算法都建立在以往算法的基础上,直观且逻辑性强,易于理解。本书收录了丰富的实际案例,并有大量上机习题,便于理论结合实践。 内容推荐 本书是一本适应当今运筹学发展趋势的优秀的综合性入门教材,主要特点是重视建模和算法的结合,引入了相关的建模工具以及用其进行模型开发的基本技巧。全书共分14章,前3章介绍数学模型的问题求解和改进搜索的基本概念与原理,其余内容则覆盖了确定型优化领域的几乎全部内容,除了传统的线性规划的模型、算法、对偶理论和灵敏度分析等内容以外,还包括了网络流、整数/组合优化、非线性规划和目标规划等领域的基本模型和主要算法。此外,本书还包含了遗传算法、模拟退火、禁忌搜索和分支切割算法等前沿内容。全书采用统一的理论框架,以简单的“改进搜索”思路贯穿始终,全面且循序渐进地演绎了各种优化算法和方法,包括传统的单纯形法、牛顿法、网络流算法以及各种启发式算法,使读者感受到每次引入的新算法都建立在以往算法的基础上,直观且逻辑性强,易于理解。本书收录了丰富的实际案例,并有大量上机习题,便于理论结合实践。 本书适用于工程和数学专业本科生或研究生的运筹学引论课程,也可以作为管理专业本科生或研究生的选修课教材,以及诸如线性规划、整数规划和组合优化、网络流和非线性规划等子领域的入门课程的教材。 目录 CHAPTER 1 PROBLEM SOLVING WITH MATHEMATICAL MODELS 1.1 OR Application Stories 1.2 Optimization and the Operations Research Process 1.3 System Boundaries, Sensitivity Analysis, Tractability and Validity 1.4 Descriptive Models and Simulation 1.5 Numerical Search and Exact versus Heuristic Solutions 1.6 Deterministic versus Stochastic Models 1.7 Perspectives Exercises CHAPTER 2 DETERMINISTIC OPTIMIZATION MODELS IN OPERATIONS RESEARCH 2.1 Decision Variables, Constraints, and Objective Functions 2.2 Graphic Solution and Optimization Outcomes 2.3 Large-Scale Optimization Models and Indexing 2.4 Linear and Nonlinear Programs 2.5 Discrete or Integer Programs 2.6 Multiobjective Optimization Models 2.7 Classification Summary Exercises CHAPTER 3 IMPROVING SEARCH 3.1 Improving Search, Local and Global Optima 3.2 Search with Improving and Feasible Directions 3.3 Algebraic Conditions for Improving and Feasible Directions 3.4 Unimodel and Convex Model Forms Tractable for Improving Search 3.5 Searching and Starting Feasible Solutions Exercises CHAPTER 4 LINEAR PROGRAMMING MODELS 4.1 Allocation Models 4.2 Blending Models 4.3 Operations Planning Models 4.4 Shift Scheduling and Staff Planning Models 4.5 Time-Phased Models 4.6 Models with Linearizable Nonlinear Objectives Exercises CHAPTER 5 SIMPLEX SEARCH FOR LINEAR PROGRAMMING 5.1 LP Optimal Solutions and Standard Form 5.2 Extreme-Point Search and Basic Solutions 5.3 The Simplex Algorithm 5.4 Dictionary and Tableau Representations of Simplex 5.5 Two Phase Simplex 5.6 Degeneracy and Zero-Length Simplex Steps 5.7 Convergence and Cycling with Simplex 5.8 Doing It Efficiently: Revised Simplex 5.9 Simplex with Simple Upper and Lower Bounds Exercises CHAPTER 6 INTERIOR POINT METHODS FOR LINEAR PROGRAMMING 6.1 Searching through the Interior 6.2 Scaling with the Current Solution 6.3 Affine Scaling Search 6.4 Log Barrier Methods for Interior Point Search 6.5 Dual and Primal-Dual Extensions Exercises CHAPTER 7 DUALITY AND SENSITIVITY IN LINEAR PROGRAMMING 7.1 Generic Activities versus Resources Perspective 7.2 Qualitative Sensitivity to Changes in Model Coefficients 7.3 Quantifying Sensitivity to Changes in LP Model Coefficients: A Dual Model 7.4 Formulating Linear Programming Duals 7.5 Primal-to-Dual Relationships 7.6 Computer Outputs and What If Changes of Single Parameters 7.7 Bigger Model Changes, Reoptimization, and Parametric Programming Exercises CHAPTER 8 MULTIOBYECTIVE OPTIMIZATION AND GOAL PROGRAMMING 8.1 Multiobjective Optimization Models 8.2 Efficient Points and the Efficient Frontier 8.3 Preemptive Optimization and Weighted Sums of Objectives 8.4 Goal Programming Exercises CHAPTER 9 SHORTEST PATHS AND DISCRETE DrNAMIC PROGRAMMING 409 9.1 Shortest Path Models 9.2 Dynamic Programming Approach to Shortest Paths 9.3 Shortest Paths From One Node to All Others:Bellman-Ford 9.4 Shortest Paths From All Nodes to All Others:Floyd-Warshall 9.5 Shortest Path From One Node to All Others With Costs Nonnegative:Dijkstra 9.6 Shortest Paths From One Node to All Others in Acyclic Digraphs 9.7 CPM Project Scheduling and Longest Paths 9.8 Discrete Dynamic Programming Models Exercises CHAPTER 10 NETWORK FLOWS 10.1 Graphs, Networks, and Flows 10.2 Cycle Directions for Network Flow Search 10.3 Rudimentary Cycle Direction Search Algorithms for Network Flows 10.4 Integrality of Optimal Network Flows 10.5 Transportation and Assignment Models 10.6 Other Single-Commodity Network Flow Models 10.7 Network Simplex Algorithm for Optimal Flows 10.8 Cycle Canceling Algorithms for Optimal Flows 10.9 Multicommodity and Gain/Loss Flows Exercises CHAPTER 11 DISCRETE OPTIMIZATION MODELS 555 11.1 Lumpy Linear Programs and Fixed Charges 11.2 Knapsack and Capital Budgeting Models 11.3 Set Packing, Covering, and Partitioning Models 11.4 Assignment and Matching Models 11.5 Traveling Salesman and Routing Models 11.6 Facility Location and Network Design Models 11.7 Processor Scheduling and Sequencing Models Exercises CHAPTER 12 DISCRETE OPTIMIZATION METHODS 12.1 Solving by Total Enumeration 12.2 Relaxations of Discrete Optimization Models and Their Uses 12.3 Stronger LP relaxations, Valid Inequalities,and Lagrangian Relaxations 12.4 Branch and Bound Search 12.5 Rounding, Parent Bounds, Enumerations Sequences, and Stopping Early in Branch and Bound 12.6 Improving Search Heuristics for Discrete Optimization INLPs 680 12.7 Tabu, Simulated Annealing, and Genetic Algorithm Extensions of Improving Search 12.8 Constructive Heuristics Exercises 705 CHAPTER 13 UNCONSTRAINED NONLINEAR PROGRAMMING 13.1 Unconstrained Nonlinear Programming Models 13.2 One-DimensionalSearch 726 13.3 Derivatives, Taylor Series, and Conditions for Local Optima 13.4 Convex/Concave Functions and Global Optimality 749 13.5 Gradient Search 13.6 Newton's Method 13.7 Quasi-Newton Methods and BFGS Search 13.8 Optimization without Derivatives and Nelder-Mead 774 Exercises 781 CHAPTER 14 CONSTRAINED NONLINEAR PROGRAMMING 14.1 Constrained Nonlinear Programming Models 14.2 Convex, Separable, Quadratic and Posynomial Geometric Programming Special NLP Forms 14.3 Lagrange Multiplier Methods 14.4 Karush-Kuhn-Tucker Optimality Conditions 14.5 Penalty and Barrier Methods 14.6 Reduced Gradient Algorithms 14.7 Quadratic Programming Methods 14.8 Separable Programming Methods 14.9 Posynomial Geometric Programming Methods Exercises SELECTED ANSWERS INDEX |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。