本书是常微分方程课程的英文教材,由作者结合多年的全英文教学经验编写而成。主要内容包括常微分方程的初等积分法、线性微分方程组理论和常系数线性微分方程组的求解方法、高阶线性微分方程理论和常系数高阶线性微分方程的求解方法、解的存在唯一性理论、微分方程的定性理论以及常微分方程的数值求解方法等。为了读者更方便地运用Maple软件解决常微分方程的应用问题,本书给出了一些实际范例和Maple程序。
本书可作为高等学校数学与应用数学专业常微分方程课程的双语、全英文教材,也可供教师和科学技术人员参考。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 常微分方程(普通高等学校规划教材)(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | |
出版社 | 中国矿业大学出版社 |
下载 | ![]() |
简介 | 内容推荐 本书是常微分方程课程的英文教材,由作者结合多年的全英文教学经验编写而成。主要内容包括常微分方程的初等积分法、线性微分方程组理论和常系数线性微分方程组的求解方法、高阶线性微分方程理论和常系数高阶线性微分方程的求解方法、解的存在唯一性理论、微分方程的定性理论以及常微分方程的数值求解方法等。为了读者更方便地运用Maple软件解决常微分方程的应用问题,本书给出了一些实际范例和Maple程序。 本书可作为高等学校数学与应用数学专业常微分方程课程的双语、全英文教材,也可供教师和科学技术人员参考。 目录 Chapter 1 Elementary Integration Method 1.1 Fundamental Concepts Exeraise 1.1 1.2 Separable Equations Exercise 1.2 1.3 Homogeneous Equations Exercise 1.3 1.4 First-Order Linear Differential Equations Exercise 1.4 1.5 Exact Differential Equations Exercise 1.5 1.6 Integrating Factor Method Exercise 1.6 1.7 Flexibility in Problem Solving Exercise 1.7 1.8 Implicit First-Order Differential Equations Exercise 1.8 1.9 High-Order Differential Equations Exercise 1.9 Chapter 2 Linear Systems of Differential Equations 2.1 First-Order System of Differential Equations 2.2 First-Order Linear System of Differential Equations 2.3 Existence and Uniqueness for First-Order System Exercise 2.3 2.4 General Theory of Linear Homogeneous Systems Exercise 2.4 2.5 General Theory of Nonhomogeneous Linear System Exercise 2.5 2.6 Linear Differential System with Constant Coefficients Exercise 2.6 2.7 Periodic Linear Systems Exercise 2.7 Chapter 3 High-Order Linear Differential Equations 3.1 Introduction Exercise 3.1 3.2 Existence and Uniqueness for High-Order Equations Exercise 3.2 3.3 General Solutions of High-Order Homogeneous Linear Equations Exercise 3.3 3.4 Nonhomogeneous High-Order Linear Differential Equations Exercise 3.4 3.5 High-Order Homogeneous Linear Equations with Constant Coefficients Exercise 3.5 3.6 High-Order Nonhomogeneous Linear Equations with Constant Coefficients Exercise 3.6 3.7 Power Series Methods Exercise 3.7 3.8 Laplace Transform Methods Exeraise 3.8 Chapter 4 General Theory 4.1 Peano's Existence Theorem Exercise 4.1 4.2 Existence and Uniqueness of Solutions Exercise 4.2 4.3 Extension Theorem Exercise 4.3 4.4 Continuous Dependence on Initial Values and Parameters Exercise 4.4 Chapter 5 Qualitative Theory 5.1 Stability Exercise 5.1 5.2 Stability of Linear Systems Exercise 5.2 5.3 The Method of Lyapunov Exercise 5.3 5.4 Basic Concepts of Two-Dimensional Autonomous Systems Exercise 5.4 5.5 Critical Points of Two-Dimensional Linear Autonomous Systems Exercise 5.5 5.6 Limit Cycles of Two-Dimensional Autonomous Systems Exercise 5.6 Chapter 6 Numerical Methods for Ordinary Differential Equations 6.1 Introduction to Numerical Methods 6.2 Numerical Approximation: Euler's Method 6.3 An Improvement in Euler's Method 6.4 The Runge-Kutta Method Appendix Application of Maple2020 for Ordinary Differential Equations Al Introduction to Maple2020 A2 Basic Operations for Maple2020 A3 Maple2020 for Solving Ordinary Differential Equations References |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。