![]()
内容推荐 本书介绍的内容属于几何分析领域,可以将其视为调和分析和几何测度论之间的交界,这些内容大多数与有趣的开放性问题有关。黎兹变换是本书涉及所有问题的基础,本书还提供了所得结果的简要说明。本书的各章节以各个问题的背景展开讨论,逻辑清晰。全书共五章,分别为某些康托尔型集合上的有理逼近的失效、C^1调和容量的对偶表征、李普希兹图上奇异积分的变分:光滑截断、李普希兹图上奇异积分的变分:粗截断,以及黎兹变换的变分与一致可求长性。 目录 Introduction Topics covered in this book: Statement and main results Other comments 1 Failure of rational approximation on some Cantor type sets 1.1 Proof of the main result 1.2 A(K) = R(K) when K1 has no interior 2 A dual characterization of the C1harmonic capacity 2.1 Preliminaries 2.2 The heart of the matter 2.3 An open question: Some consequences for an affirmative answer 3 Variation and oscillation for singular integrals with odd kernel on Lipschitz graphs: Smooth truncation 3.1 Preliminaries 3.2 Sketch of the proof of Main Theorem 3.0.1 3.3 Proof of Theorem 3.2.1 3.4 Proof of Theorem 3.2.2 3.5 L2 localization of Vp o 口(特殊符号) and O o 口(特殊符号) 3.6 LP and endpoint estimates for 口(特殊符号) and 口(特殊符号) 4 Variation and oscillation for singular integrals with odd kernel on Lipschitz graphs: Rough truncation 4.1 L2 estimates for 口(特殊符号) and 口(特殊符号) 4.2 LP and endpoint estimates for口(特殊符号) and口(特殊符号) 5 Variation and oscillation for Riesz transforms and uniform rectifiability 5.1 Boundedness of V o Tg from口(特殊符号) to 口(特殊符号) 5.2 LP boundedness of V, o Tu for uniformly rectifiable measures 5.3 L2 boundedness of V, o Tu for uniformly rectifiable measures μ 5.4 L2 boundedness of Vp o Ru implies that u is a uniformly rectifiable measure 5.5 Boundedness of Vp o T from M(Rd) to L1,∞(口(特殊公式)) Bibliography 编辑手记 |