Preface to the Third English Edition
Preface to the First English Edition
Preface to the German Edition
Notation
Chapter I
Introduction
1. Examples and Classification of PDE's
Examples 2 -- Classification of PDE's 8 -- Well-posed problems 9
-- Problems 10
2. The Maximum Principle
Examples 13- Corollaries 14- Problem 15
3. Finite Difference Methods
Discretization 16 -- Discrete maximum principle 19 -- Problem 21
4. A Convergence Theory for Difference Methods
Consistency 22 -- Local and global error 22 -- Limits of the con-
vergence theory 24 -- Problems 26
Chapter H
Conforming Finite Elements
1. Sobolev Spaces
Introduction to Sobolev spaces 29 -- Friedrichs' inequality 30 --
Possible singularities of H1 functions 31 -- Compact imbeddings
32 -- Problems 33
2. Variational Formulation of Elliptic Boundary-Value Problems of
Second Order
Variational formulation 35 -- Reduction to homogeneous bound-
ary conditions 36 -- Existence of solutions 38 -- Inhomogeneous
boundary conditions 42 -- Problems 42
3. The Neumann Boundary-Value Problem. A Trace Theorem
Ellipticity in H 1 44-- Boundary-value problems with natural bound-
ary conditions 45 -- Neumann boundary conditions 46 -- Mixed
boundary conditions 47 -- Proof of the trace theorem 48 -- Practi-
cal consequences of the trace theorem 50 -- Problems 52
4. The Ritz-Galerkin Method and Some Finite Elements
Model problem 56 -- Problems 58
5. Some Standard Finite Elements
Requirements on the meshes 61 -- Significance of the differentia-
bility properties 62 -- Triangular elements with complete polyno-
mials 64 -- Remarks on C1 elements 67 -- Bilinear elements 68 --
Quadratic rectangular elements 69 -- Affine families 70 -- Choice
of an element 74 -- Problems 74
6. Approximation Properties
The Bramble-Hiibert lemma 77 -- Triangular elements with com-
plete polynomials 78 -- Bilinear quadrilateral elements 81 -- In-
verse estimates 83 -- CIement's interpolation 84 -- Appendix: On
the optimality of the estimates 85 -- Problems 87
7. Error Bounds for Elliptic Problems of Second Order
Remarks on regularity 89 -- Error bounds in the energy norm 90 --
L2 estimates 91 -- A simple L∞ estimate 93 -- The L2-projector
94 -- Problems 95
8. Computational Considerations
Assembling the stiffness matrix 97 -- Static condensation 99 --
Complexity of setting up the matrix 100 -- Effect on the choice of
a grid 100 -- Local mesh refinement 100 -- Implementation of the
Neumann boundary-value problem 102 -- Problems 103
Chapter III
Nonconforming and Other Methods
1. Abstract Lemmas and a Simple Boundary Approximation
Generalizations of C6a's lemma 106 -- Duality methods 108 -- The
Crouzeix-Raviart element 109 -- A simple approximation to curved
boundaries 112 -- Modifications of the duality argument 114 --
Problems 116
2. Isoparametric Elements
Isoparametric triangular elements 117 -- Isoparametric quadrilateral
elements 119- Problems 121
3. Further Tools from Functional Analysis
Negative norms 122 -- Adjoint operators 124 -- An abstract exis-
tence theorem 124 --An abstract convergence theorem 126 --Proof
of Theorem 3.4 127 -- Problems 128
4. Saddle Point Problems
Saddle points and minima 129 -- The inf-sup condition 130 --
Mixed finite element methods 134 -- Fortin interpolation 136 --
Saddle point problems with penalty term 138 -- Typical applications
141 -- Problems 142 "
5. Mixed Methods for the Poisson Equation
The Poisson equation as a mixed problem 145 -- The Raviart-
Thomas element 148 -- Interpolation by Raviart-Thomas elements
149 -- Implementation and postprocessing 152 -- Mesh-dependent
norms for the Raviart-Thomas element 153 -- The softening be-
haviour of mixed methods 154 -- Problems 156
6. The Stokes Equation
Variational formulation 158 -- The inf-sup condition 159 -- Nearly
incompressible flows 161 -- Problems 161
7. Finite Elements for the Stokes Problem
An instable element 162 -- The Taylor-Hood element 167 -- The
MINI element 168 -- The divergence-free nonconforming P1 ele-
ment 170- Problems 171
8. A Posteriori Error Estimates
Residual estimators 174-- Lower estimates 176 -- Remark on other
estimators 179 -- Local mesh refinement and convergence 179
9. A Posteriori Error Estimates via the Hypercircle Method
Chapter IV
The Conjugate Gradient Method
1. Classical Iterative Methods for Solving Linear Systems
Stationary linear processes 187 -- The Jacobi and Gauss-Seidel
methods 189- The model problem 192- Overrelaxation 193-
Problems 195
2. Gradient Methods
The general gradient method 196 -- Gradient methods and quadratic
functions 197 -- Convergence behavior in the case of large condition
numbers 199 -- Problems 200
3. Conjugate Gradient and the Minimal Residual Method
The CG algorithm 203 -- Analysis of the CG method as an optimal
method 196 -- The minimal residual method 207 -- Indefinite and
unsymmetric matrices 208 -- Problems 209
4. Preconditioning
Preconditioning by SSOR 213 -- Preconditioning by ILU 214 --
Remarks on parallelization 216 -- Nonlinear problems 217 -- Prob-
lems 218
5. Saddle Point Problems
The Uzawa algorithm and its variants 221 -- An alternative 223 --
Problems 224
Chapter V
Multigrid Methods
1. Multigrid Methods for Variational Problems
Smoothing properties of classical iterative methods 226 --The multi-
grid idea 227 -- The algorithm 228 -- Transfer between grids 232
-- Problems 235
2. Convergence of Multigrid Methods
Discrete norms 238 -- Connection with the Sobolev norm 240 --
Approximation property 242 -- Convergence proof for the two-grid
method 244 -- An alternative short proof 245 -- Some variants 245
-- Problems 246
3. Convergence for Several Levels
A recurrence formula for the W-cycle 248 -- An improvement for
the energy norm 249 -- The convergence proof for the V-cycle 251
-- Problems 254
4. Nested Iteration
Computation of starting values 255 -- Complexity 257 -- Multi-
grid methods with a small number of levels 258 -- The CASCADE
algorithm 259 -- Problems 260
5. Multigrid Analysis via Space Decomposition
Schwarz alternating method 262 -- Assumptions 265 -- Direct con-
sequences 266 -- Convergence of multiplicative methods 267 --
Verification of A1 269- Local mesh'refinements 270- Problems
271
6. Nonlinear Problems
The multigrid-Newton method 273 -- The nonlinear multigrid
method 274 -- Starting values 276 -- Problems 277
Chapter VI
Finite Elements in Solid Mechanics
1. Introduction to Elasticity Theory
Kinematics 279 -- The equilibrium equations 281 -- The Piola trans-
form 283 -- Constitutive Equations 284 -- Linear material laws 288
2. Hyperelastic Materials
3. Linear Elasticity Theory
The variational problem 293 -- The displacement formulation 297
-- The mixed method of Hellinger and Reissner 300 -- The mixed
method of Hu and Washizu 302 -- Nearly incompressible material
304 -- Locking 308 -- Locking of the Timoshenko beam and typical
remedies 310 -- Problems 314
4. Membranes
Plane stress states 315 -- Plane strain states 316 -- Membrane ele-
ments 316 --The PEERS element 317 -- Problems 320
5. Beams and Plates: The Kirchhoff Plate
The hypotheses 323 -- Note on beam models 326-- Mixed methods
for the Kirchoff plate 326 -- DKT elements 328 -- Problems 334
6. The Mindlin-Reissner Plate
The Helmholtz decomposition 336 -- The mixed formulation with
the Helmholtz decomposition 338 -- MITC elements 339 -- The
model without a Helmholtz decomposition 343 -- Problems 346
References
Index