罗斯所著的《数理金融初步(英文版第3版)》清晰简洁地阐述了数理金融学的基本问题,主要包括套利、Black-Scholes期权定价公式以及效用函数、最优资产组合原理、资本资产定价模型等知识,并将书中所讨论的问题的经济背景、解决这些问题的数学方法和基本思想系统地展示给读者。
本书内容选择得当、结构安排合理,既适合作为高等院校学生(包括财经类专业及应用数学专业)的教材,同时也适合从事金融工作的人员阅读。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 数理金融初步(英文版第3版)/华章数学原版精品系列 |
分类 | 经济金融-金融会计-金融 |
作者 | (美)罗斯 |
出版社 | 机械工业出版社 |
下载 | ![]() |
简介 | 编辑推荐 罗斯所著的《数理金融初步(英文版第3版)》清晰简洁地阐述了数理金融学的基本问题,主要包括套利、Black-Scholes期权定价公式以及效用函数、最优资产组合原理、资本资产定价模型等知识,并将书中所讨论的问题的经济背景、解决这些问题的数学方法和基本思想系统地展示给读者。 本书内容选择得当、结构安排合理,既适合作为高等院校学生(包括财经类专业及应用数学专业)的教材,同时也适合从事金融工作的人员阅读。 内容推荐 罗斯所著的《数理金融初步(英文版第3版)》基于期权定价全面介绍数理金融学的基本问题,数理推导严密,内容深入浅出,适合受过有限数学训练的专业交易员和高等院校相关专业本科生阅读。本书清晰简洁地阐述了套利、Black-Scholes期权定价公式、效用函数、最优投资组合选择、资本资产定价模型等知识。 《数理金融初步(英文版第3版)》在第2版的基础上新增了布朗运动与几何布朗运动、随机序关系、随机动态规划等内容,并且扩展了每一章的习题和参考文献。 目录 Introduction and Preface 1 Probability 1.1 Probabilities and Events 1.2 Conditional Probability 1.3 Random Variables and Expected Values 1.4 Covariance and Correlation 1.5 Conditional Expectation 1.6 Exercises 2 Normal Random Variables 2.1 Continuous Random Variables 2.2 Normal Random Variables 2.3 Properties of Normal Random Variables 2.4 The Central Limit Theorem 2.5 Exercises 3 Brownian Motion and Geometric Brownian Motion 3.1 Brownian Motion 3.2 Brownian Motion as a Limit of Simpler Models 3.3 Geometric Brownian Motion 3.3.1 Geometric Brownian Motion as a Limit of Simpler Models 3.4 *The Maximum Variable 3.5 The Cameron-Martin Theorem 3.6 Exercises 4 Interest Rates and Present Value Analysis 4.1 Interest Rates 4.2 Present Value Analysis 4.3 Rate of Return 4.4 Continuously Varying Interest Rates 4.5 Exercises 5 Pricing Contracts via Arbitrage 5.1 An Example in Options Pricing 5.2 Other Examples of Pricing via Arbitrage 5.3 Exercises 6 The Arbitrage Theorem 6.1 The Arbitrage Theorem 6.2 The Multiperiod Binomial Model 6.3 Proof of the Arbitrage Theorem 6.4 Exercises 7 The Black-Scboles Formula 7.1 Introduction 7.2 The Black-Scholes Formula 7.3 Properties of the Black-Scholes Option Cost 7.4 The Delta Hedging Arbitrage Strategy 7.5 Some Derivations 7.5.1 The Black-Scholes Formula 7.5.2 The Partial Derivatives 7.6 European Put Options 7.7 Exercises 8 Additional Results on Options 8.1 Introduction 8.2 Call Options on Dividend-Paying Securities 8.2.1 The Dividend for Each Share of the Security Is Paid Continuously in Time at a Rate Equal to a Fixed Fraction f of the Price of the Security 8.2.2 For Each Share Owned, a Single Payment of fS(td) IS Made at Time td 8.2.3 For Each Share Owned, a Fixed Amount D Is to Be Paid at Time td 8.3 Pricing American Put Options 8.4 Adding Jumps to Geometric Brownian Motion 8.4.1 When the Jump Distribution Is Lognormal 8.4.2 When the Jump Distribution Is General 8.5 Estimating the Volatility Parameter 8.5.1 Estimating a Population Mean and Variance 8.5.2 The Standard Estimator of Volatility 8.5.3 Using Opening and Closing Data 8.5.4 Using Opening, Closing, and High-Low Data 8.6 Some Comments 8.6.1 When the Option Cost Differs from the Black-Scholes Formula 8.6.2 When the Interest Rate Changes 8.6.3 Final Comments 8.7 Appendix 8.8 Exercises 9 Valuing by Expected Utility 9.1 Limitations of Arbitrage Pricing 9.2 Valuing Investments by Expected Utility 9.3 The Portfolio Selection Problem 9.3.1 Estimating Covariances 9.4 Value at Risk and Conditional Value at Risk 9.5 The Capital Assets Pricing Model 9.6 Rates of Return: Single-Period and Geometric Brownian Motion 9.7 Exercises 10 Stochastic Order Relations 10.1 First-Order Stochastic Dominance 10.2 Using Coupling to Show Stochastic Dominance 10.3 Likelihood Ratio Ordering 10.4 A Single-Period Investment Problem 10.5 Second-Order Dominance 10.5.1 Normal Random Variables 10.5.2 More on Second-Order Dominance 10.6 Exercises 11 Optimization Models 11.1 Introduction 11.2 A Deterministic Optimization Model 11.2.1 A General Solution Technique Based on Dynamic Programming 11.2.2 A Solution Technique for Concave Return Functions 11.2.3 The Knapsack Problem 11.3 Probabilistic Optimization Problems 11.3.1 A Gambling Model with Unknown Win Probabilities 11.3.2 An Investment Allocation Model 11.4 Exercises 12 Stochastic Dynamic Programming 12.1 The Stochastic Dynamic Programming Problem 12.2 Infinite Time Models 12.3 Optimal Stopping Problems 12.4 Exercises 13 Exotic Options 13.1 Introduction 13.2 Barrier Options 13.3 Asian and Lookback Options 13.4 Monte Carlo Simulation 13.5 Pricing Exotic Options by Simulation 13.6 More Efficient Simulation Estimators 13.6.1 Control and Antithetic Variables in the Simulation of Asian and Lookback Option Valuations 13.6.2 Combining Conditional Expectation and Importance Sampling in the Simulation of Barrier Option Valuations 13.7 Options with Nonlinear Payoffs 13.8 Pricing Approximations via Multiperiod Binomial Models 13.9 Continuous Time Approximations of Barrier and Lookback Options 13.10 Exercises 14 Beyond Geometric Brownian Motion Models 14.1 Introduction 14.2 Crude Oil Data 14.3 Models for the Crude Oil Data 14.4 Final Comments 15 Autoregressive Models and Mean Reversion 15.1 The Autoregressive Model 15.2 Valuing Options by Their Expected Return 15.3 Mean Reversion 15.4 Exercises Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。