《量子群入门》是由世界图书出版公司出版的,是影印版书籍。全书介绍了Poisson-Lie groups and Lie bialgebras、Coboundary PoissoI-Lie groups and the classical Yang-Baxter equation、Solutions of the classical Yang-Baxterequation、Quasitriangular Hopf algebras、Representations and quasitensor categories等16部分的内容。
Introduction
1 Poisson-Lie groups and Lie bialgebras
1.1 Poisson manifolds
A Definitions
B Functorial properties
C Symplectic leaves
1.2 Poisson-Lie groups
A Definitions
B Poisson homogeneous spaces
1.3 Lie bialgebras
A The Lie bialgebra of a Poisson-Lie group
B Martintriples
C Examples
D Derivations
1.4 Duals and doubles
A Duals of Lie bialgebras and Poisson-Lie groups
B The classical double
C Compact Poisson-Lie groups
1.5 Dressing actions and symplectic leaves
A Poisson actions
B Dressing transformations and symplectic leaves
C Symplectic leaves in compact Poisson-Lie groups
D Thetwsted ease
1.6 Deformation of Poisson structures and quantization
A Deformations of Poisson algebras
BWeylquantization
C Quantization as deformation
Bibliographical notes
2 Coboundary PoissoI-Lie groups and the classical Yang-Baxter equation
3 Solutions of the classical Yang-Baxterequation
4 Quasitriangular Hopf algebras
5 Representations and quasitensor categories
6 Quantization of Lie bialgebras
7 Quantized function algebras
8 Structure of QUE algebras:the universal R-matrix
9 Specializations of QUE algebras
10 Representations of QUE algebas the generic case
11 Representations of QUE algebas the root of unity case
12 Infinite-dimensionalquantum groups
13 Quantum harmonic analysis
14 Canonical bases
15 Quantum gruop invariants f knots and 3-manifolds
16 Quasi-Hopf algebras and the Knizhnik -Zamolodchikov equation