网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 量子群入门
分类 科学技术-自然科学-数学
作者 (美)沙里
出版社 世界图书出版公司
下载
简介
编辑推荐

《量子群入门》是由世界图书出版公司出版的,是影印版书籍。全书介绍了Poisson-Lie groups and Lie bialgebras、Coboundary PoissoI-Lie groups and the classical Yang-Baxter equation、Solutions of the classical Yang-Baxterequation、Quasitriangular Hopf algebras、Representations and quasitensor categories等16部分的内容。

目录

Introduction

1 Poisson-Lie groups and Lie bialgebras

 1.1 Poisson manifolds

A Definitions

B Functorial properties

C Symplectic leaves

 1.2 Poisson-Lie groups

A Definitions

B Poisson homogeneous spaces

 1.3 Lie bialgebras

A The Lie bialgebra of a Poisson-Lie group

B Martintriples

C Examples

D Derivations

 1.4 Duals and doubles

A Duals of Lie bialgebras and Poisson-Lie groups

B The classical double

C Compact Poisson-Lie groups

 1.5 Dressing actions and symplectic leaves

A Poisson actions

B Dressing transformations and symplectic leaves

C Symplectic leaves in compact Poisson-Lie groups

D Thetwsted ease

 1.6 Deformation of Poisson structures and quantization

A Deformations of Poisson algebras

BWeylquantization

C Quantization as deformation

Bibliographical notes

2 Coboundary PoissoI-Lie groups and the classical Yang-Baxter equation

3 Solutions of the classical Yang-Baxterequation

4 Quasitriangular Hopf algebras

5 Representations and quasitensor categories

6 Quantization of Lie bialgebras

7 Quantized function algebras

8 Structure of QUE algebras:the universal R-matrix

9 Specializations of QUE algebras

10 Representations of QUE algebas the generic case

11 Representations of QUE algebas the root of unity case

12 Infinite-dimensionalquantum groups

13 Quantum harmonic analysis

14 Canonical bases

15 Quantum gruop invariants f knots and 3-manifolds

16 Quasi-Hopf algebras and the Knizhnik -Zamolodchikov equation

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/25 12:00:32