这是本全英文版本的信息检索知识读本。主要介绍了信息检索(IR)中的11个关键问题以及其如何影响搜索引擎的设计与实现,并且用数学模型强化了重要的概念。本书内容丰富,针对性、实用性较强,适合作为高等院校计算机科学或计算机工程专业的本科生、研究生的教材使用。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 搜索引擎信息检索实践(英文版)/经典原版书库 |
分类 | 人文社科-社会科学-社会科学总论 |
作者 | (美)克罗夫特 |
出版社 | 机械工业出版社 |
下载 | ![]() |
简介 | 编辑推荐 这是本全英文版本的信息检索知识读本。主要介绍了信息检索(IR)中的11个关键问题以及其如何影响搜索引擎的设计与实现,并且用数学模型强化了重要的概念。本书内容丰富,针对性、实用性较强,适合作为高等院校计算机科学或计算机工程专业的本科生、研究生的教材使用。 内容推荐 本书介绍了信息检索(IR)中的关键问题,以及这些问题如何影响搜索引擎的设计与实现,并且用数学模型强化了重要的概念。对于网络搜索引擎这一重要的话题,书中主要涵盖了在网络上广泛使用的搜索技术。 本书适用于高等院校计算机科学或计算机工程专业的本科生、研究生,对于专业人士而言,本书也不失为一本理想的入门教材。 目录 1 Search Engines and Information Retrieval 1.1 What Is Information Retrieval? 1.2 The Big Issues 1.3 Search Engines 1.4 Search Engineers 2 Architecture of a Search Engine 2.1 What Is an Architecture? 2.2 Basic Building Blocks 2.3 Breaking It Down 2.3.1 Text Acquisition 2.3.2 Text Transformation 2.3.3 Index Creation 2.3.4 User Interaction 2.3.5 Ranking 2.3.6 Evaluation 2.4 How Does It Really Work? 3 Crawls and Feeds 3.1 Deciding What to Search 3.2 Crawling the Web 3.2.1 Retrieving Web Pages 3.2.2 The Web Crawler 3.2.3 Freshness 3.2.4 Focused Crawling 3.2.5 Deep Web 3.2.6 Sitemaps 3.2.7 Distributed Crawling 3.3 Crawling Documents and Email 3.4 Document Feeds 3.5 The Conversion Problem 3.5.1 Character Encodings 3.6 Storing the Documents 3.6.1 Using a Database System 3.6.2 Random Access 3.6.3 Compression and Large Files 3.6.4 Update 3.6.5 BigTable 3.7 Detecting Duplicates 3.8 Removing Noise 4 Processing Text 4.1 From Words to Terms 4.2 Text Statistics 4.2.1 Vocabulary Growth 4.2.2 Estimating Collection and Result Set Sizes 4.3 Document Parsing 4.3.1 Overview 4.3.2 Tokenizing 4.3.3 Stopping 4.3.4 Stemming 4.3.5 Phrases and N-grams 4.4 Document Structure and Markup 4.5 Link Analysis 4.5.1 Anchor Text 4.5.2 PageRank 4.5.3 Link Quality 4.6 Information Extraction 4.6.1 Hidden Markov Models for Extraction 4.7 Internationalization 5 Ranking with Indexes 5.1 Overview 5.2 Abstract Model of Ranking 5.3 Inverted Indexes 5.3.1 Documents 5.3.2 Counts 5.3.3 Positions 5.3.4 Fields and Extents 5.3.5 Scores 5.3.6 Ordering 5.4 Compression 5.4.1 Entropy and Ambiguity 5.4.2 Delta Encoding 5.4.3 Bit-Aligned Codes 5.4.4 Byte-Aligned Codes 5.4.5 Compression in Practice 5.4.6 Looking Ahead 5.4.7 Skipping and Skip Pointers 5.5 Auxiliary Structures 5.6 Index Construction 5.6.1 Simple Construction 5.6.2 Merging 5.6.3 Parallelism and Distribution 5.6.4 Update 5.7 Query Processing 5.7.1 Document-at-a-time Evaluation 5.7.2 Term-at-a-time Evaluation 5.7.3 Optimization Techniques 5.7.4 Structured Queries 5.7.5 Distributed Evaluation 5.7.6 Caching 6 Queries and Interfaces 6.1 Information Needs and Queries 6.2 Query Transformation and Refinement 6.2.1 Stopping and Stemming Revisited 6.2.2 Spell Checking and Suggestions 6.2.3 Query Expansion 6.2.4 Relevance Feedback 6.2.5 Context and Personalization 6.3 Showing the Results 6.3.1 Result Pages and Snippets 6.3.2 Advertising and Search 6.3.3 Clustering the Results 6.4 Cross-Language Search 7 Retrieval Models 7.1 Overview of Retrieval Models 7.1.1 Boolean Retrieval 7.1.2 The Vector Space Model 7.2 Probabilistic Models 7.2.1 Information Retrieval as Classification 7.2.2 The BM25 Ranking Algorithm 7.3 Ranking Based on Language Models 7.3.1 Query Likelihood Ranking 7.3.2 Relevance Models and Pseudo-Relevance Feedback 7.4 Complex Queries and Combining Evidence 7.4.1 The Inference Network Model 7.4.2 The Galago Query Language 7.5 Web Search 7.6 Machine Learning and Information Retrieval 7.6.1 Learningto Rank 7.6.2 Topic Models and Vocabulary Mismatch 7.7 Application-Based Models 8 Evaluating Search Engines 8.1 Why Evaluate ? 8.2 The Evaluation Corpus 8.3 Logging 8.4 Effectiveness Metrics 8.4.1 Recall and Precision 8.4.2 Averaging and Interpolation 8.4.3 Focusing on the Top Documents 8.4.4 Using Preferences 8.5 Efficiency Metrics 8.6 Training, Testing, and Statistics 8.6.1 Significance Tests 8.6.2 Setting Parameter Values 8.6.3 Online Testing 8.7 The Bottom Line 9 Classification and Clustering 9.1 Classification and Categorization 9.1.1 Naive Bayes 9.1.2 Support Vector Machines 9.1.3 Evaluation 9.1.4 Classifier and Feature Selection 9.1.5 Spam, Sentiment, and Online Advertising 9.2 Clustering 9.2.1 Hierarchical and K-Means Clustering 9.2.2 K Nearest Neighbor Clustering 9.2.3 Evaluation 9.2.4 How to Choose K 9.2.5 Clustering and Search 10 Social Search 10.1 What Is Social Search? 10.2 User Tags and Manual Indexing 10.2.1 Searching Tags 10.2.2 Inferring Missing Tags 10.2.3 Browsing and Tag Clouds 10.3 Searching with Communities 10.3.1 What Is a Community? 10.3.2 Finding Communities 10.3.3 Community-Based Question Answering 10.3.4 Collaborative Searching 10.4 Filtering and Recommending 10.4.1 Document Filtering 10.4.2 Collaborative Filtering 10.5 Peer-to-Peer and Metasearch 10.5.1 Distributed Search 10.5.2 P2P Networks 11 Beyond Bag of Words 11.1 Overview 11.2 Feature-Based Retrieval Models 11.3 Term Dependence Models 11.4 Structure Revisited 11.4.1 XML Retrieval 11.4.2 Entity Search 11.5 Longer Questions, Better Answers 11.6 Words, Pictures, and Music 11.7 One Search Fits All? References Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。