![]()
内容推荐 全书共16章,分为4个部分:第壹部分工程基础篇(1~3)介绍了机器学习和软件工程的融合,涉及理论、方法、工程化的数据科学环境和数据准备;第二部分机器学习基础篇(4~5)讲述了机器学习建模流程、核心概念,数据分析方法;第三部分特征篇(6~8)详细介绍了多种特征离散化方法和实现、特征自动衍生工具和自动化的特征选择原理与实现;第四部分模型篇(9~16)首先,深入地剖析了线性模型、树模型和集成模型的原理,以及模型调参方法、自动调参、模型性能评估和模型解释等;然后,通过5种工程化的模型上线方法讲解了模型即服务;最后,讲解了模型的稳定性监控的方法与实现,这是机器学习项目的最后一环。 |