网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 应用预测建模(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | (美)M.库恩//K.约翰逊 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 内容推荐 本书是一部关于数据分析的经典教材,聚焦预测建模的实际应用,如如何进行数据预处理、模型调优、预测变量重要性度量、变量选择等。读者可以从中学到许多建模方法以及提高对许多常用的、现代的有效模型的认识,如线性回归、非线性回归和分类模型,涉及树方法、支持向量机等。书中还涉及从数据预处理到建模再到模型评估和选择的整个过程,以及背后的统计思想,涉及各种回归技术和分类技术。 目录 1 Introduction 1.1 Prediction Versus Interpretation 1.2 Key Ingredients of Predictive Models 1.3 Terminology 1.4 Example Data Sets and Typical Data Scenarios 1.5 Overview 1.6 Notation Part Ⅰ General Strategies 2 A Short Tour of the Predictive Modeling Process 2.1 Case Study:Predicting Fuel Economy 2.2 Themes 2.3 Summary 3 Data Pre-processing 3.1 Case Study:Cell Segmentation in High-Content Screening 3.2 Data Transformations for Individual Predictors 3.3 Data Transformations for Multiple Predictors 3.4 Dealing with Missing Values 3.5 Removing Predictors 3.6 Adding Predictors 3.7 Binning Predictors 3.8 Computing Exercises 4 Over-Fitting and Model Tuning 4.1 The Problem of Over-Fitting 4.2 Model Tuning 4.3 Data Splitting 4.4 Resampling Techniques 4.5 Case Study:Credit Scoring 4.6 Choosing Final Tuning Parameters 4.7 Data Splitting Recommendations 4.8 Choosing Between Models 4.9 Computing Exercises Part Ⅱ Regression Models 5 Measuring Performance in Regression Models 5.1 Quantitative Measures of Performance 5.2 The Variance-Bias Trade-off 5.3 Computing 6 Linear Regression and Its Cousins 6.1 Case Study:Quantitative Structure-Activity Relationshir Modeling 6.2 Linear Regression 6.3 Partial Least Squares 6.4 Penalized Models 6.5 Computing Exercises 7 Nonlinear Regression Models 7.1 Neural Networks 7.2 Multivariate Adaptive Regression Splines 7.3 Support Vector Machines 7.4 K-Nearest Neighbors 7.5 Computing Exercises 8 Regression Trees and Rule-Based Models 8.1 Basic Regression Trees 8.2 Regression Model Trees 8.3 Rule-Based Models 8.4 Bagged Trees 8.5 Random Forests 8.6 Boosting 8.7 Cubist 8.8 Computing Exercises 9 A Summary of Solubility Models 10 Case Study:Compressive Strength of Concrete Mixtures 10.1 Model Building Strategy 10.2 Model Performance 10.3 Optimizing Compressive Strength 10.4 Computing Part Ⅲ Classification Models 11 Measuring Performance in Classification Models 11.1 Class Predictions 11.2 Evaluating Predicted Classes 11.3 Evaluating Class Probabilities 11.4 Computing 12 Discriminant Analysis and Other Linear Classification Models 12.1 Case Study:Predicting Successful Grant Applications 12.2 Logistic Regression 12.3 Linear Discriminant Analysis 12.4 Partial Least Squares Discriminant Analysis 12.5 Penalized Models 12.6 Nearest Shrunken Centroids 12.7 Computing Exercises 13 Nonlinear Classification Models 13.1 Nonlinear Discriminant Analysis 13.2 Neural Networks 13.3 Flexible Discriminant Analysis 13.4 Support Vector Machines 13.5 K-Nearest Neighbors 13.6 Naive Bayes 13.7 Computing Exercises 14 Classification Trees and Rule-Based Models 14.1 Basic Classification Trees 14.2 Rule-Based Models 14.3 Bagged Trees 14.4 Random Forests 14.5 Boosting 14.6 C5.0 14.7 Comparing Two Encodings of Categorical Predictors 14.8 Computing Exercises 15 A Summary of Grant Application Models 16 Remedies for Severe Class Imbalance 16.1 Case Study:Predicting Caravan Policy Ownership 16.2 The Effect of Class Imbalance 16.3 Model Tuning 16.4 Alternate Cutoffs 16.5 Adjusting Prior Probabilities 16.6 Unequal Case Weights 16.7 Sampling Methods 16.8 Cost-Sensitive Training 16.9 Computing Exercises 17 Case Study:Job Scheduling 17.1 Data Splitting and Model Strategy 17.2 Results 17.3 Computing Part Ⅳ Other Considerations 18 Measuring Predictor Importance 18.1 Numeric Outcomes 18.2 Categorical Outcomes 18.3 Other Approaches 18.4 Computing Exercises 19 An Introduction to Feature Selection …… |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。