内容推荐 德国著名理论物理学家W.格雷钠等教授撰写的13卷集“理论物理学教科书”,是一套内容完整实用面向大学生和硕士研究生的现代物理学教材。它以系统的、统一的、连贯的方式阐述了现代理论物理学的各个方面。本套教材的特点:①取材新颖。作者十分重视最新实验数据对理论物理学概念发展和深化的重要作用,不断引人大量新的材料扩充其内容。②内容叙述简明、清晰、易懂,数学推导详尽。③每卷中都输入了数以百计的例题和习题,并均给出了详细的解答。这在当前理物理学的大量出版物中是极为难得的,它能帮助和辅导学生把理论物理学的概。 本册为《经典力学(质点系和哈密顿动力学第2版影印版)(英文版)》。 目录 Part I Newtonian Mechanics in Moving Coordinate Systems 1 Newton's Equations in a Rotating Coordinate System 1.1 Introduction of the Operator D 1.2 Formulation of Newton's Equation in the Rotating Coordinate System 1.3 Newton's Equations in Systems with Arbitrary Relative Motion 2 Free Fall on the Rotating Earth 2.1 Perturbation Calculation 2.2 Method of Successive Approximation 2.3 Exact Solution 3 Foucault's Pendulum 3.1 Solution of the Differential Equations 3.2 Discussion of the Solution Part II Mechanics of Particle Systems 4 Degrees of Freedom 4.1 Degrees of Freedom of a Rigid Body 5 Center of Gravity 6 Mechanical Fundamental Quantities of Systems of Mass Points 6.1 Linear Momentum of the Many-Body System 6.2 Angular Momentum of the Many-Body System 6.3 Energy Law of the Many-Body System 6.4 Transformation to Center-of-Mass Coordinates 6.5 Transformation of the Kinetic Energy Part III Vibrating Systems 7 Vibrations of Coupled Mass Points 7.1 The Vibrating Chain 8 The Vibrating String 8.1 Solution of the Wave Equation 8.2 Normal Vibrations 9 Fourier Series 10 The Vibrating Membrane 10.1 Derivation of the Differential Equation 10.2 Solution of the Differential Equation 10.3 Inclusion of the Boundary Conditions 10.4 Eigenfrequencies 10.5 Degeneracy 10.6 Nodal Lines 10.7 General Solution 10.8 Superposition of Node Line Figures 10.9 The Circular Membrane 10.10 Solution of Bessel's Differential Equation Part IV Mechanics of Rigid Bodies 11 Rotation About a Fixed Axis 11.1 Moment of Inertia 11.2 The Physical Pendulum 12 Rotation About a Point 12.1 Tensor of Inertia 12.2 Kinetic Energy of a Rotating Rigid Body 12.3 The Principal Axes of Inertia 12.4 Existence and Orthogonality of the Principal Axes 12.5 Transformation of the Tensor of Inertia 12.6 Tensor of Inertia in the System of Principal Axes 12.7 Ellipsoid of Inertia 13 Theory of the Top 13.1 The Free Top 13.2 Geometrical Theory of the Top 13.3 Analytical Theory of the Free Top 13.4 The Heavy Symmetric Top: Elementary Considerations 13.5 Further Applications of the Top 13.6 The Euler Angles 13.7 Motion of the Heavy Symmetric Top Part V Lagrange Equations 14 Generalized Coordinates 14.1 Quantities of Mechanics in Generalized Coordinates 15 D'Alembert Principle and Derivation of the Lagrange Equations 15.1 Virtual Displacements 16 Lagrange Equation for Nonholonomic Constraints 17 Special Problems 17.1 Velocity-Dependent Potentials 17.2 Nonconservative Forces and Dissipation Function (Friction Function: 17.3 Nonholonomic Systems and Lagrange Multipliers Part VI Hamiltonian Theory 18 Hamilton's Equations 18.1 The Hamilton Principle 18.2 General Discussion of Variational Principles 18.3 Phase Space and Liouville's Theorem 18.4 The Principle of Stochastic Cooling 19 Canonical Transformations 20 Hamilton-Jacobi Theory 20.1 Visual Interpretation of the Action Function S 20.2 Transition to Quantum Mechanics 21 Extended Hamilton-Lagrange Formalism 21.1 Extended Set of Euler-Lagrange Equations 21.2 Extended Set of Canonical Equations 21.3 Extended Canonical Transformations 22 Extended Hamilton-Jacobi Equation Part VII Nonlinear Dynamics 23 Dynamical Systems 23.1 Dissipative Systems: Contraction of the Phase-Space Volume . . . 23.2 Attractors 23.3 Equilibrium Solutions 23.4 Limit Cycles 24 Stability of Time-Dependent Paths 24.1 Periodic Solutions 24.2 Discretization and Poincar6 Cuts 25 Bifurcations 25.1 Static Bifurcations 25.2 Bifurcations of Time-Dependent Solutions 26 Lyapunov Exponen |