网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 白话强化学习与PyTorch
分类
作者 高扬//叶振斌
出版社 电子工业出版社
下载
简介
内容推荐
本书以“平民”的起点,从“零”开始,基于PyTorch框架,介绍深度学习和强化学习的技术与技巧,逐层铺垫,营造良好的带入感和亲近感,把学习曲线拉平,使得没有学过微积分等高级理论的程序员一样能够读得懂、学得会。同时,本书配合漫画插图来调节阅读气氛,并对每个原理都进行了对比讲解和实例说明。
本书适合对深度学习和强化学习感兴趣的技术人员、希望对深度学习和强化学习进行入门了解的技术人员及深度学习和强化学习领域的初级从业人员阅读。
目录
传统篇
第1章 强化学习是什么
1.1 题设
1.1.1 多智能才叫智能
1.1.2 人工智能的定义
1.2 强化学习的研究对象
1.2.1 强化学习的应用场合
1.2.2 强化学习的建模
1.3 本章小结
第2章 强化学习的脉络
2.1 什么是策略
2.2 什么样的策略是好的策略
2.3 什么是模型
2.4 如何得到一个好的策略
2.4.1 直接法
2.4.2 间接法
2.5 马尔可夫决策过程
2.5.1 状态转移
2.5.2 策略与评价
2.5.3 策略优化
2.6 Model-Based和Model-Free
2.6.1 Model-Based
2.6.2 规划问题
2.6.3 Model-Free
2.7 本章小结
第3章 动态规划
3.1 状态估值
3.2 策略优化
3.3 本章小结
第4章 蒙特卡罗法
4.1 历史由来
4.2 状态估值
4.3 两种估值方法
4.3.1 首次访问蒙特卡罗策略估值
4.3.2 每次访问蒙特卡罗策略估值
4.3.3 增量平均
4.4 弊端
4.5 本章小结
第5章 时间差分
5.1 SARSA算法
5.1.1 SARSA算法的伪代码
5.1.2 SARSA算法的优点和缺点
5.2 Q-Learning算法
5.2.1 Q-Learning算法的伪代码
5.2.2 Q-Learning算法的优点和缺点
5.3 On-Policy和Off-Policy
5.4 On-Line学习和Off-Line学习
5.5 比较与讨论
5.6 本章小结
现代篇
第6章 深度学习
6.1 PyTorch简介
6.1.1 历史渊源
6.1.2 支持
6.2 神经元
6.3 线性回归
6.4 激励函数
6.4.1 Sigmoid函数
6.4.2 Tanh函数
6.4.3 ReLU函数
6.4.4 Linear函数
6.5 神经网络
6.6 网络训练
6.6.1 输入
6.6.2 输出
6.6.3 网络结构
6.6.4 损失函数
6.6.5 求解极小值
6.6.6 线性回归
6.6.7 凸函数
6.6.8 二元(多元)凸函数
6.6.9 导数补充
6.6.10 导数怎么求
6.6.11 “串联”的神经元
6.6.12 模型的工作
6.6.13 理解损失函数
6.7 深度学习的优势
6.7.1 线性和非线性的叠加
6.7.2 不用再提取特征
6.7.3 处理线性不可分
6.8 手写数字识别公开数据集
6.9 全连接网络
6.9.1 输入与输出
6.9.2 代码解读
6.9.3 运行结果
6.10 卷积神经网络
6.10.1 代码解读
6.10.2 理解卷积神经网络的结构
6.10.3 卷积核的结构
6.11 循环神经网络
6.11.1 网络结构
6.11.2 应用案例
6.11.3 代码解读
6.12 其他注意事项
6.12.1 并行计算
6.12.2 梯度消失和梯度爆炸
6.12.3 归一化
6.12.4 超参数的设置
6.12.5 正则化
6.12.6 不唯一的模型
6.13 深度神经网络的发展趋势
6.14 本章小结
第7章 Gym——不要钱的试验场
7.1 简介
7.2 安装
7.3 类别
7.4 接口
7.5 本章小结
第8章 DQN算法族
8.1 2013版DQN
8.1.1 模型结构
8.1.2 训练过程
8.1.3 Replay Memory
8.1.4 小结
8.2 2015版DQN
8.2.1 模型结构
8.2.2 训练过程
8.2.3 Target网络
8.2.4 小结
8.3 Double DQN
8.3.1 模型结构
8.3.2 训练过程
8.3.3 效果
8.3.4 小结
8.4 Dueling DQN
8.4.1 模型结构
8.4.2 效果
8.4.3 小结
8.5 优先回放DQN
8.6 本章小结
第9章 PG算法族
9.1 策略梯度
9.2 DPG
9.3 Actor-Critic
9.4 DDPG
9.5 本章小结
第10章 A3C
10.1 模型结构
10.1.1 A3C Q-Learning
10.1.2 A3C Actor-Critic
10.2 本章小结
第11章 UNREAL
11.1 主任务
11.2 像素控制任务
11.3 奖励值预测
11.4 值函数回放
11.5 损失函数
11.6 本章小结
扩展篇
第12章 NEAT
12.1 遗传算法
12.1.1 进化过程
12.1.2 算法流程
12.1.3 背包问题
12.1.4 极大(小)值问题
12.2 NEAT原理
12.2.1 基因组
12.2.2 变异和遗传
12.3 NEAT示例
12.4 本章小结
第13章 SerpentAI
13.1 简介
13.2 安装和配置
13.3 示例
13.3.1 创建Game Plugin
13.3.2 创建Game Agent
13.3.3 训练Context Classifier
13.3.4 训练Agent
13.4 本章小结
第14章 案例详解
14.1 AlphaGo
14.1.1 Alph
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/1/31 14:34:36