网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 OpenCV+TensorFlow深度学习与计算机视觉实战
分类 计算机-操作系统
作者 王晓华
出版社 清华大学出版社
下载
简介
内容推荐
王晓华著的《OpenCV+TensorFlow深度学习与计算机视觉实战》旨在掌握深度学习基本知识和特性的基础上,培养使用TensorFlow+OpenCV进行实际编程以解决图像处理相关问题的能力。全书力求通过通俗易懂的语言和详细的程序分析,介绍TensorFlow的基本用法、高级模型设计和对应的程序编写。
本书共13章,内容包括计算机视觉与深度学习的关系、Python的安装和使用、Python数据处理及可视化、机器学习的理论和算法、计算机视觉处理库OpenCV、OpenCV图像处理实战、TensorFlow基本数据结构和使用、TensorFlow数据集的创建与读取、BP神经网络、反馈神经网络、卷积神经网络等。本书强调理论联系实际,着重介绍TensorFlow+OpenCV解决图像识别的应用,提供大量数据集供读者使用,并以代码的形式实现深度学习模型实例供读者参考。
本书既可作为学习人工神经网络、深度学习、TensorFlow程序设计以及图像处理等相关内容的程序设计人员的自学用书,也可作为高等院校和培训学校相关专业的教材使用。
作者简介
王晓华,高校资深计算机专业讲师,给研究生和本科生讲授面向对象程序设计、数据结构、Hadoop程序设计等相关课程。主要研究方向为云计算、数据挖掘。曾主持和参与多项国家和省级科研课题,独立完成一项科研成果获省级成果认定,发表过多篇论文,申请有一项专利。
目录
第1章 计算机视觉与深度学习
1.1 计算机视觉与深度学习的关系
1.1.1 人类视觉神经的启迪
1.1.2 计算机视觉的难点与人工神经网络
1.1.3 应用深度学习解决计算机视觉问题
1.2 计算机视觉学习的基础与研究方向
1.2.1 学习计算机视觉结构图
1.2.2 计算机视觉的学习方式和未来趋势
1.3 本章小结
第2章 Python的安装与使用
2.1 Python基本安装和用法
2.1.1 Anaconda的下载与安装
2.1.2 Python编译器PyCharm的安装
2.1.3 使用Python计算softmax函数
2.2 TensorFlow类库的下载与安装(基于CPU模式)
2.3 TensorFlow类库的下载与安装(基于GPU模式)
2.3.1 CUDA配置
2.3.2 cuDNN配置
2.4 OpenCV类库的下载与安装
2.5 Python常用类库中的threading
2.5.1 threading库的使用
2.5.2 threading模块中最重要的Thread类
2.5.3 threading中的Lock类
2.5.4 threading中的join类
2.6 本章小结
第3章 Python数据处理及可视化
3.1 从小例子起步—NumPy的初步使用
3.1.1 数据的矩阵化
3.1.2 数据分析
3.1.3 基于统计分析的数据处理
3.2 图形化数据处理—Matplotlib包的使用
3.2.1 差异的可视化
3.2.2 坐标图的展示
3.2.3 玩个大的数据集
3.3 深度学习理论方法—相似度计算
3.3.1 基于欧几里得距离的相似度计算
3.3.2 基于余弦角度的相似度计算
3.3.3 欧几里得相似度与余弦相似度的比较
3.4 数据的统计学可视化展示
3.4.1 数据的四分位
3.4.2 数据的四分位示例
3.4.3 数据的标准化
3.4.4 数据的平行化处理
3.4.5 热点图-属性相关性检测
3.5 Python数据分析与可视化实战—某地降水的关系处理
3.5.1 不同年份的相同月份统计
3.5.2 不同月份之间的增减程度比较
3.5.3 每月降水是否相关
3.6 本章小结
第4章 深度学习的理论基础—机器学习 4.1 机器学习基本分类
4.1.1 基于学科的分类
4.1.2 基于学习模式的分类
4.1.3 基于应用领域的分类
4.2 机器学习基本算法
4.2.1 机器学习的算法流程
4.2.2 基本算法的分类
4.3 算法的理论基础
4.3.1 小学生的故事—求圆的面积
4.3.2 机器学习基础理论—函数逼近
4.4 回归算法
4.4.1 函数逼近经典算法—线性回归算法
4.4.2 线性回归的姐妹—逻辑回归
4.5 机器学习的其他算法—决策树
4.5.1 水晶球的秘密
4.5.2 决策树的算法基础—信息熵
4.5.3 决策树的算法基础—ID3算法
4.6 本章小结
第5章 计算机视觉处理库OpenCV
5.1 认识OpenCV
5.1.1 OpenCV的结构
5.1.2 从雪花电视谈起—在Python中使用OpenCV
5.2 OpenCV基本的图片读取
5.2.1 基本的图片存储格式
5.2.2 图像的读取与存储
5.2.3 图像的转换
5.2.4 使用NumPy模块对图像进行编辑
5.3 OpenCV的卷积核处理
5.3.1 计算机视觉的三种不同色彩空间
5.3.2 卷积核与图像特征提取
5.3.3 卷积核进阶
5.4 本章小结
第6章 OpenCV图像处理实战
6.1 图片的自由缩放以及边缘裁剪
6.1.1 图像的扩缩裁挖
6.1.2 图像色调的调整
6.1.3 图像的旋转、平移和翻转
6.2 使用OpenCV扩大图像数据库
6.2.1 图像的随机裁剪
6.2.2 图像的随机旋转变换
6.2.3 图像色彩的随机变换
6.2.4 对鼠标的监控
6.3 本章小结
第7章 Let's play TensorFlow
7.1 TensorFlow游乐场
7.1.1 I want to play a game
7.1.2 TensorFlow游乐场背后的故事
7.1.3 如何训练神经网络
7.2 Hello TensorFlow
7.2.1 TensorFlow名称的解释 7.2.2 TensorFlow基本概念
7.2.3 TensorFlow基本架构
7.3 本章小结
第8章 Hello TensorFlow,从0到
8.1 TensorFlow的安装
8.2 TensorFlow常量、变量和数据类型
8.3 TensorFlow矩阵计算
8.4 Hello TensorFlow
8.5 本章小结
第9章 TensorFlow重要算法基础
9.1 BP神经网络简介
9.2 BP神经网络两个基础算法详解
9.2.1 最小二乘法详解
9.2.2 道士下山的故事—梯度下降算法
9.3 TensorFlow实战—房屋价格的计算
9.3.1 数据收集
9.3.2 模型的建立与计算
9.3.3 TensorFlow程序设计
9.4 反馈神经网络反向传播算法介绍
9.4.1 深度学习基础
9.4.2 链式求导法则
9.4.3 反馈神经网络原理与公式推导
9.4.4 反馈神经网络原理的激活函数
9.4.5 反馈神经网络原理的Python实现
9.5 本章小结
第10章 TensorFlow数据的生成与读取
10.1 TensorFlow的队列
10.1.1 队列的创建
10.1.2 线程同步与
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/5 3:21:51