本书是当代数学大师的著作。该书重点论述一致收敛、一到极限,以及在积分或微分情况下普遍的一致性等理论。
这本教材的蓝本从1968年开始使用,先后两次改版,重印四次,非常适合学过微积分的高校数学系本科生使用。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 高等数学分析(第2版) |
分类 | 科学技术-自然科学-数学 |
作者 | S.Lang |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 本书是当代数学大师的著作。该书重点论述一致收敛、一到极限,以及在积分或微分情况下普遍的一致性等理论。 这本教材的蓝本从1968年开始使用,先后两次改版,重印四次,非常适合学过微积分的高校数学系本科生使用。 内容推荐 本书作者是当代数学大师,这本教材的蓝本从1968年开始使用,先后两次改版,重印四次,非常适合学过微积分的高校数学系本科生使用。本书重点论述一致收敛、一到极限,以及在积分或微分情况下普遍的一致性等理论。 目录 Foreword to the First Edition Foreword to the Second Edition PART ONE Review of Calculus CHAPTER 0 Sets and Mappings 1. Sets 2. Mappings 3. Natural Numbers and Induction 4. Denumerable Sets 5. Equivalence Relations
CHAPTER I Real Numbers 1. Algebraic Axioms 2. Ordering Axioms 3. Integers and Rational Numbers 4. The Completeness Axiom CHAPTER II Limits and Continuous Functions 1. Sequences of Numbers 2. Functions and Limits 3. Limits with Infinity 4. Continuous Functions CHAPTER III Differentiation 1. Properties of the Derivative 2. Mean Value Theorem 3. Inverse Functions CHAPTER IV Elementary Functions I. Exponential 2. Logarithm 3. Sine and Cosine 4. Complex Numbers CHAPTER V The Elementary Real Integral 1. Characterization of the Integral 2. Properties of the Integral 3. Taylor's Formula 4. Asymptotic Estimates and Stirling's Formula PART TWO Convergence CHAPTER VI Normed Vector Spaces 1. Vector Spaces 2. Normcd Vector Spaces 3. n-Space and Function Spaces 4. Completeness 5. Open and Closed Sets CHAPTER VII Limits 1. Basic Properties 2. Continuous Maps 3. Limits in Function Spaces 4. Completion of a Normed Vector Space CHAPTER VIII Compactness L Basic Properties of Compact Sets 2. Continuous Maps on Compact Sets 3. Algebraic Closure of the Complex Numbers 4. Relation with Open Coverings CHAPTER IX Series 1. Basic Definitions 2. Series of Positive Numbers 3. Non-Absolute Convergence 4. Absolute Convergence in Vector Spaces 5. Absolute and Uniform Convergence 6. Power Series 7. Differentiation and Integration of Series
CHAPTER X The Integral In One Variable 1. Extension Theorem for Linear Maps 2. Integral of Step Maps 3. Approximation by Step Maps 4. Properties of the IntegralAppendix. The Lebesgue Integral 5. The Derivative 6. Relation Between the Integral and the Derivative 7. Interchanging Derivatives and Integrals PART THREE Applications of the Integral
CHAPTER XI Approximation with Convolutions 1. Dirac Sequences 2. The Weierstrass Theorem CHAPTER XII Fourier Series 1. Hermitian Products and Orthogonality 2. Trigonometric Polynomials as a Total Family 3. Explicit Uniform Approximation 4. Pointwise Convergence CHAPTER XIII Improper Integrals 1. Definition 2. Criteria for Convergence 3. Interchanging Derivatives and Integrals 4. The Heat Kernel CHAPTER XIV The Fourier Integral 1. The Schwartz Space 2. The Fourier Inversion Formula 3. An Example of Fourier Transform not in the Schwartz Space PART FOUR Calculus In Vector Spaces CHAPTER XV Functlona on n-Space 1. Partial Derivatives 2. Differentiability and the Chain Rule 3. Potential Functions 4. Curve Integrals 5. Taylor's Formula 6. Maxima and the Derivative CHAPTER XVI The Winding Number and Global Potential Functions I. Another Description of the Integral Along a Path 2. The Winding Number and Homology 3. Proof of the Global Integrability Theorem 4. The Integral Over Continuous Paths 5. The Homotopy Form of the Integrability Theorem 6. More on Homotopies CHAPTER XVII Derivatives In Vector Spaces 1. The Space of Continuous Linear Maps 2. The Derivative as a Linear Map 3. Properties of the Derivative 4. Mean Value Theorem 5. The Second Derivative 6. Higher Derivatives and Taylor's Formula 7. Partial Derivatives 8. Differentiating Under the Integral Sign CHAPTER XVIII Inverse Mapping Theorem I. The Shrinking Lemma 2. Inverse Mappings, Linear Case 3. The Inverse Mapping Theorem 4. Implicit Functions and Charts 5. Product Decompositions CHAPTER XIX Ordinary Differential Equations 1. Local Existence and Uniqueness 2. Approximate Solutions 3. Linear Differential Equations 4. Dependence on Initial Conditions PART FIVE Multiple Integration CHAPTER XX Multiple Integrals 1. Elementary Multiple Integration 2. Criteria for Admissibility 3. Repeated Integrals 4. Change of Variables 5. Vector Fields on Spheres CHAPTER XXI Differential Forms 1. Definitions 2. Stokes' Theorem for a Rectangle 3. Inverse Image of a Form 4. Stokes" Formula for Simplices Appendix Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。