网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 数字图像处理(MATLAB版第2版英文版)
分类 科学技术-工业科技-电子通讯
作者 (美)冈萨雷斯//伍兹//埃丁斯
出版社 电子工业出版社
下载
简介
目录

Preface

Acknowledgements

About the Authors

1 Introduction

 Preview

 1.1 Background

 1.2 What Is Digital Image Processing?

 1.3 Background on MATLAB and the Image Processing Toolbox

 1.4 Areas of Image Processing Covered in the Book

 1.5 The Book Web Site

 1.6 Notation

 1.7 Fundamentals

1.7.1 The MATLAB Desktop

1.7.2 Using the MATLAB Editor/Debugger

1.7.3 Getting Help

1.7.4 Saving and Retrieving Work Session Data

1.7.5 Digital Image Representation

1.7.6 Image I/O and Display

1.7.7 Classes and Image Types

1.7.8 M-Function Programming

 1.8 How References Are Organized in the Book

 Summary

2 Intensity Transformations and Spatial Filtering

 Preview

 2.1 Background

 2.2 Intensity Transformation Functions

2.2.1 Functions imadjust and stretchlim

2.2.2 Logarithmic and Contrast- Stretching Transformations

2.2.3 Specifying Arbitrary Intensity Transformations

2.2.4 Some Utility M-functions for Intensity Transformations

 2.3 Histogram Processing and Function Plotting

2.3.1 Generating and Plotting Image Histograms

2.3.2 Histogram Equalization

2.3.3 Histogram Matching (Specification)

2.3.4 Function adapthisteq

 2.4 Spatial Filtering

2.4.1 Linear Spatial Filtering

2.4.2 Nonlinear Spatial Filtering

 2.5 Image Processing Toolbox Standard Spatial Filters

2.5.1 Linear Spatial Filters

2.5.2 Nonlinear Spatial Filters

 2.6 Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering

2.6.1 Background

2.6.2 Introduction to Fuzzy Sets

2.6.3 Using Fuzzy Sets

2.6.4 A Set of Custom Fuzzy M-functions

2.6.5 Using Fuzzy Sets for Intensity Transformations

2.6.6 Using Fuzzy Sets for Spatial Filtering

 Summary

3 Filtering in the Frequency Domain

 Preview

 3.1 The 2-D Discrete Fourier Transform

 3.2 Computing and Visualizing the 2-D DFT in MATLAB

 3.3 Filtering in the Frequency Domain

3.3.1 Fundamentals

3.3.2 Basic Steps in DFT Filtering

3.3.3 An M-function for Filtering in the Frequency Domain

 3.4 Obtaining Frequency Domain Filters from Spatial Filters

 3.5 Generating Filters Directly in the Frequency Domain

3.5.1 Creating Meshgrid Arrays for Use in Implementing Filters in the Frequency Domain

3.5.2 Lowpass (Smoothing) Frequency Domain Filters

3.5.3 Wireframe and Surface Plotting

 3.6 Highpass (Sharpening) Frequency Domain Filters

3.6.1 A Function for Highpass Filtering

3.6.2 High-Frequency Emphasis Filtering

 3.7 Selective Filtering

3.7.1 Bandreject and Bandpass Filters

3.7.2 Notchreject and Notchpass Filters

 Summary

4 Image Restoration and Reconstruction

 Preview

 4.1 A Model of the Image Degradation/Restoration Process

 4.2 Noise Models

4.2.1 Adding Noise to Images with Function imnoise

4.2.2 Generating Spatial Random Noise with a Specified Distribution

4.2.3 Periodic Noise

4.2.4 Estimating Noise Parameters

 4.3 Restoration in the Presence of Noise Only—Spatial Filtering

4.3.1 Spatial Noise Filters

4.3.2 Adaptive Spatial Filters

 4.4 Periodic Noise Reduction Using Frequency Domain Filtering

 4.5 Modeling the Degradation Function

 4.6 Direct Inverse Filtering

 4.7 Wiener Filtering

 4.8 Constrained Least Squares (Regularized) Filtering

 4.9 Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm

 4.10 Blind Deconvolution

 4.11 Image Reconstruction from Projections

4.11.1 Background

4.11.2 Parallel-Beam Projections and the Radon Transform

4.11.3 The Fourier Slice Theorem and Filtered Backprojections

4.11.4 Filter Implementation

4.11.5 Reconstruction Using Fan-Beam Filtered Backprojections

4.11.6 Function radon

4.11.7 Function iradon

4.11.8 Working with Fan-Beam Data

 Summary

5 Geometric Transformations and Image Registration

 Preview

 5.1 Transforming Points

 5.2 Affine Transformations

 5.3 Projective Transformations

 5.4 Applying Geometric Transformations to Images

 5.5 Image Coordinate Systems in MATLAB

5.5.1 Output Image Location

5.5.2 Controlling the Output Grid

 5.6 Image Interpolation

5.6.1 Interpolation in Two Dimensions

5.6.2 Comparing Interpolation Methods

 5.7 Image Registration

5.7.1 Registration Process

5.7.2 Manual Feature Selection and Matching Using cpselect

5.7.3 Inferring Transformation Parameters Using cp2tform

5.7.4 Visualizing Aligned Images

5.7.5 Area-Based Registration

5.7.6 Automatic Feature-Based Registration

 Summary

6 Color Image Processing

 Preview

 6.1 Color Image Representation in MATLAB

6.1.1 RGB Images

6.1.2 Indexed Images

6.1.3 Functions for Manipulating RGB and Indexed Images

 6.2 Converting Between Color Spaces

6.2.1 NTSC Color Space

6.2.2 The YCbCr Color Space

6.2.3 The HSV Color Space

6.2.4 The CMY and CMYK Color Spaces

6.2.5 The HSI Color Space

6.2.6 Device-Independent Color Spaces

 6.3 The Basics of Color Image Processing

 6.4 Color Transformations

 6.5 Spatial Filtering of Color Images

6.5.1 Color Image Smoothing

6.5.2 Color Image Sharpening

 6.6 Working Directly in RGB Vector Space

6.6.1 Color Edge Detection Using the Gradient

6.6.2 Image Segmentation in RGB Vector Space

 Summary

7 Wavelets

 Preview

 7.1 Background

 7.2 The Fast Wavelet Transform

7.2.1 FWTs Using the Wavelet Toolbox

7.2.2 FWTs without the Wavelet Toolbox

 7.3 Working with Wavelet Decomposition Structures

7.3.1 Editing Wavelet Decomposition Coefficients without the Wavelet Toolbox

7.3.2 Displaying Wavelet Decomposition Coefficients

 7.4 The Inverse Fast Wavelet Transform

 7.5 Wavelets in Image Processing

 Summary

8 Image Compression

 Preview

 8.1 Background

 8.2 Coding Redundancy

8.2.1 Huffman Codes

8.2.2 Huffman Encoding

8.2.3 Huffman Decoding

 8.3 Spatial Redundancy

 8.4 Irrelevant Information

 8.5 JPEG Compression

8.5.1 JPEG

8.5.2 JPEG 2000

 8.6 Video Compression

8.6.1 MATLAB Image Sequences and Movies

8.6.2 Temporal Redundancy and Motion Compensation

 Summary

9 Morphological Image Processing

 Preview

 9.1 Preliminaries

9.1.1 Some Basic Concepts from Set Theory

9.1.2 Binary Images, Sets, and Logical Operators

 9.2 Dilation and Erosion

9.2.1 Dilation

9.2.2 Structuring Element Decomposition

9.2.3 The strel Function

9.2.4 Erosion

 9.3 Combining Dilation and Erosion

9.3.1 Opening and Closing

9.3.2 The Hit-or-Miss Transformation

9.3.3 Using Lookup Tables

9.3.4 Function bwmorph

 9.4 Labeling Connected Components

 9.5 Morphological Reconstruction

9.5.1 Opening by Reconstruction

9.5.2 Filling Holes

9.5.3 Clearing Border Objects

 9.6 Gray-Scale Morphology

9.6.1 Dilation and Erosion

9.6.2 Opening and Closing

9.6.3 Reconstruction

 Summary

10 Image Segmentation

 Preview

 10.1 Point, Line, and Edge Detection

10.1.1 Point Detection

10.1.2 Line Detection

10.1.3 Edge Detection Using Function edge

 10.2 Line Detection Using the Hough Transform

10.2.1 Background

10.2.2 Toolbox Hough Functions

 10.3 Thresholding

10.3.1 Foundation

10.3.2 Basic Global Thresholding

10.3.3 Optimum Global Thresholding Using Otsu's Method

10.3.4 Using Image Smoothing to Improve Global Thresholding

10.3.5 Using Edges to Improve Global Thresholding

10.3.6 Variable Thresholding Based on Local Statistics

10.3.7 Image Thresholding Using Moving Averages

 10.4 Region-Based Segmentation

10.4.1 Basic Formulation

10.4.2 Region Growing

10.4.3 Region Splitting and Merging

 10.5 Segmentation Using the Watershed Transform

10.5.1 Watershed Segmentation Using the Distance Transform

10.5.2 Watershed Segmentation Using Gradients

10.5.3 Marker-Controlled Watershed Segmentation

 Summary

11 Representation and Description

 Preview

 11.1 Background

11.1.1 Functions for Extracting Regions and Their Boundaries

11.1.2 Some Additional MATLAB and Toolbox Functions Used

in This Chapter

11.1.3 Some Basic Utility M-Functions

 11.2 Representation

11.2.1 Chain Codes

11.2.2 Polygonal Approximations Using Minimum-Perimeter Polygons

11.2.3 Signatures

11.2.4 Boundary Segments

11.2.5 Skeletons

 11.3 Boundary Descriptors

11.3.1 Some Simple Descriptors

11.3.2 Shape Numbers

11.3.3 Fourier Descriptors

11.3.4 Statistical Moments

11.3.5 Corners

 11.4 Regional Descriptors

11.4.1 Function regionprops

11.4.2 Texture

11.4.3 Moment Invariants

 11.5 Using Principal Components for Description

 Summary

Appendix A M-Function Summary

Appendix B ICE and MATLAB Graphical User Interfaces

Appendix C Additional Custom M-functions

Bibliography

Index

内容推荐

冈萨雷斯、伍兹、埃丁斯所著的《数字图像处理(MATLAB版第2版英文版)》是图像处理基础理论论述与以MATLAB为主要工具的软件实践方法相结合的第一本书。它集成了冈萨雷斯和伍兹所著的《数字图像处理(第三版)》一书中的重要内容和MathWorks公司的图像处理工具箱。本书的特色在于重点强调了怎样通过开发新代码来增强这些软件工具。本书在介绍MATLAB编程基础知识之后。讲述了图像处理的主要内容,具体包括灰度变换、线性和非线性空间滤波、频域滤波、图像复原与重建、几何变换和图像配准、彩色图像处理、小波、图像压缩、形态学图像处理、图像分割、区域和边界表示与描述等。

《数字图像处理(MATLAB版第2版英文版)》可供从事信号与信息处理、计算机科学与技术、通信工程、地球物理等专业的大专院校师生学习参考。

编辑推荐

冈萨雷斯、伍兹、埃丁斯所著的《数字图像处理(MATLAB版第2版英文版)》自成系统并以工具书的风格书写;开发了100多个图像处理函数,在图像处理工具箱中现有函数的基础上增加了40%;讨论和实现了数字图像处理主流内容中的算法和MATLAB函数;除了对第一版的主要议题加以修订之外,这个版本的特点涵盖了雷登变换、几何变换、图像配准、彩色剖面和独立于设备的彩色转换、针对视频的压缩函数、自适应阈值算法等;包含了与MATAB一起使用的详细的C代码;包含了图形用户界面(GUIs)的详细设计。

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/9 11:06:09