本书专门论述线性微分方程的伽罗瓦理论,涉及诸多方面:代数理论(尤其是微分伽罗瓦理论)、形式理论、分类、有限项可解性判定算法、单值性、希尔伯特21问题、渐近性和可求和性、反问题以及具正特征值的线性微分方程。附录是本书所用到的代数几何、线性代数群、层及Tannakian范畴中的一些概念。
本书将成为谈领域所有数学家和研究生的标准参考书。
Algebraic Theory
1 Picard-Vessiot Theory
2 Differential Operators and Differential Modules
3 Formal Local Theory
4 Algorithmic Considerations
Analytic Theory
5 Monodromy,the Riemann-Hilbert Problem,and the Differential Galois Group
6 Differential Equations on the Complex Sphere and the Riemann-Hilbert Problem
7 Exact Asymptotics
8 Stoks Phenomenon and Differential Galois Groups
9 Stokes Martrices and Meromorphic Classification
10 Universal Picard-Vessiot Rings and Galois Groups
11 Inverse Problems
12 Moduli for Singular Differential Equations
Appendices
A Algebraic Geometry
B Tannakian Categories
C Sheaves and Cohomology
D Partial Differential Equations
Bibliography
List of Notation
Index