本书是一本非常优秀的图论入门书,自从1972年出版第一版以来,深受广大读者的欢迎,不断再版,1996年已经出版了第四版。
本书用浅显易懂的语言,大量的实例和练习介绍了图论的基本知识以及横贯和拟阵等一些比较艰深的组合数学知识,读来通俗易懂,引人入胜。书中包含了大量的图论应用实例,不管是对于数学专业的师生还是对于工程专业的科技工作者都有很大的吸引力。
Preface to the fourth edition
1 Introduction
1 What is a graph?
2 Definitions and examples
2 Definition
3 Examples
4 Three puzzles
3 Paths and cycles
5 Connectivity
6 Eulerian graphs
7 Hamiltonian graphs
8 Some algorithms
4 Trees
9 Properties of trees
10 Counting trees
11 More applications
5 Planarity
12 Planar graphs
13 Euler's formula
14 Graphs on other surfaces
15 Dual graphs
16 infinite graphs
6 Colouring graphs
17 Colouring vertices
18 Brooks' theorem
19 Colouring maps
20 Colouring edges
21 Chromatic polynomials
7 Digraphs
22 Definitions
23 Eulerian digraphs and tournaments
24 Markov chains
8 Matching, marriage and Menger's theorem
25 Hall's 'marriage' theorem
26 Transversal theory
27 Applications of Hall's theorem
28 Menger's theorem
29 Network flows
9 Matroids
30 Introduction to matroids
31 Examples of matroids
32 Matroids and graphs
33 Matroids and transversals
Appendix
Bibliography
Solutions to selected exercises
Index of symbols
Index of definitions