本书在Princeton大学使用,同志在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 复分析/数学经典英文教材系列 |
分类 | 科学技术-自然科学-数学 |
作者 | 高蓉 |
出版社 | 世界图书出版公司 |
下载 | |
简介 | 编辑推荐 本书在Princeton大学使用,同志在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。 内容推荐 本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。 本书已被哈佛大学和加利福尼亚理工学院选为教材。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。 目录 Foreword Introduction Chapter 1. Preliminaries to Complex Analysis 1 Complex numbers and the complex plane 1.1 Basic properties 1.2 Convergence 1.3 Sets in the complex plane 2 Functions on the complex plane 2.1 Continuous functions 2.2 Holomorphic functions 2.3 Power series 3 Integration along curves 4 Exercises Chapter 2. Cauchy's Theorem and Its Applications 1 Goursat's theorem 2 Local existence of primitives and Cauchy's theorem in a disc 3 Evaluation of some integrals 4 Cauchy's integral formulas 5 Further applications 5.1 Morera's theorem 5.2 Sequences of holomorphic functions 5.3 Holomorphic functions defined in terms of integrals 5.4 Schwarz reflection principle 5.5 Runge's approximation theorem 6 Exercises 7 Problems Chapter 3. Meromorphic Functions and the Logarithm 1 Zeros and poles 2 The residue formula 2.1 Examples 3 Singularities and meromorphic functions 4 The argument principle and applications 5 Homotopies and simply connected domains 6 The complex logarithm 7 Fourier series and harmonic functions 8 Exercises 9 Problems Chapter 4. The Fourier Transform 1 The class 2 Action of the Fourer transform on 3 Paley-Wiener theorem 4 Exercises 5 Problems Chapter 5. Entire Functions 1 Jensen's formula 2 Functions of finite order 3 Infinite products 3.1 Generalities 3.2 Example: the product formula for the sine function 4 Weierstrass infinite products 5 Hadamard's factorization theorem 6 Exercises 7 Problems Chapter 6. The Gamma and Zeta Functions 1 The gamma function 1.1 Analytic continuation 1.2 Further properties of F 2 The zeta function 2.1 Functional equation and analytic continuation 3 Exercises 4 Problems Chapter 7. The Zeta Function and Prime Number The orem 1 Zeros of the zeta function 1.1 Estimates for 1/c(s) 2 Reduction to the functions φ and φ1 2.1 Proof of the asymptotics for φ1 Note on interchanging double sums 3 Exercises 4 Problems Chapter 8. Conformal Mappings 1 Conformal equivalence and examples 1.1 The disc and Upper half-plane 1.2 Further examples 1.3 The Dirichlet problem in a strip 2 The Schwarz lemma; automorphisms of the disc and upper half-plane 2.1 Automorphisms of the disc 2.2 Automorphisms of the upper half-plane 3 The Riemann mapping theorem 3.1 Necessary conditions and statement of the theorem 3.2 Montel's theorem 3.3 Proof of the Riemann mapping theorem 4 Conformal mappings onto polygons 4.1 Some examples 4.2 The Schwarz-Christoffel integral 4.3 Boundary behavior 4.4 The mapping formula 4.5 Return to elliptic integrals 5 Exercises 6 Problems Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 1.1 Liouville's theorems 1.2 The Weierstrass & function 2 The modular character of elliptic functions and Eisenstein series 2.1 Eisenstein series 2.2 Eisenstein series and divisor functions 3 Exercises 4 Problems Chapter 10. Applications of Theta Functions 1 Product formula for the Jacobi theta function 1.1 Further transformation laws 2 Generating functions 3 The theorems about sums of squares 3.1 The two-squares theorem 3.2 The four-squares theorem 4 Exercises 5 Problems Appendix A: Asymptotics 1 Bessel functions 2 Laplace's method; Stirling's formula 3 The Airy function 4 The partition function 5 Problems Appendix B: Simple Connectivity and Jordan Curve Theorem 1 Equivalent formulations of simple connectivity 2 The Jordan curve theorem 2.1 Proof of a general form of Cauchy's theorem Notes and References Bibliography Symbol Glossary Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。