网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 流体力学建模--不稳定性与湍流(英文)/国外优秀数学著作原版系列 |
分类 | 科学技术-自然科学-物理 |
作者 | (以)伊戈尔·盖辛斯基//弗拉基米尔·罗文斯基 |
出版社 | 哈尔滨工业大学出版社 |
下载 | ![]() |
简介 | 内容推荐 本书是一部讲述近代流体力学成果的英文专著,本书认为数学方法和模型是应用数学和理论物理学的分支。本书致力于阐释流体力学建模的相关内容,由四章组成,其中包含大量有用的练习和解决方案。我们在每章末尾的参考书目中提供了相关主题的相对完整的参考资料。 作者简介 伊戈尔·盖辛斯基(lgor Gaissinski),以色列数学家,以色列理工大学航空工程学院高级研究员。 目录 Foreword Preface 1 Mathematical Background 1.1 Dynamical systems 1.1.1 Vector felds and dynamical systems 1.1.2 Critical points in phase space 1.1.3 Higher-order autonomous systems 1.1.4 Dirac delta function 1.1.5 Special functions 1.1.6 Green's function 1.1.7 Boundary and initial value problems 1.2 Asymptotic behavior and stability 1.2.1 Asymptotic expansions 1.2.2 Asymptotic behavior of autonomous systems 1.2.3 Stability of autonomous systems 1.2.4 More on stability 1.3 Bifurcations 1.3.1 Instability and bifurcations 1.3.2 Saddle-node bifurcation 1.3.3 Transcritical and pitchfork bifurcations 1.3.4 Hopf bifurcation 1.3.5 Saddle-node bifurcation of a periodic orbit 1.3.6 Global bifurcation 1.4 Attractors 1.4.1 Chaotic motion and symbolic dynamics 1.4.2 Homoclinic tangles and Smale's horseshoe map 1.4.3 Poincaré return map 1.4.4 Lyapunov's exponents and entropy 1.4.5 Attracting sets and attractors 1.5 Fractals 1.5.1 Local structure of fractals 1.5.2 Operations with fractals 1.5.3 Fractal attractors in dynamical systems 1.6 Perturbations 1.6.1 Regular perturbation theory 1.6.2 Singular perturbation theory 1.7 Elements of tensor analysis 1.7.1 Transformations of coordinate systems 1.7.2 Covariant and contravariant derivatives 1.7.3 Christoffel symbols and curvature tensor 1.7.4 Integral formulas 1.8 Navier-Stokes equations for nonequilibrium gas mixture 1.8.1 Continuity,momentum and energy equations 1.8.2 Closing relations and transport coefficients 1.8.3 Boundary conditions 1.8.4 Deducing Navier-Stokes equation 1.8.5 Existence and uniqueness of solutions of the Navier—Stokes equation 1.8.6 Relativistic Navier—Stokes equation 1.9 Exercises bliography 2 Models for Hydrodynamic Instabilities 2.1 Stability concepts 2.1.1 Boundary conditions 2.1.2 Inviscid and high-Reynolds—number flow 2.1.3 Basic definitions 2.2 Rayleigh—Taylor instability 2.2.1 Potential flow 2.2.2 Plane boundaries 2.2.3 Spherical boundaries 2.2.4 Nonlinear perturbation theory 2.2.5 Inhomogeneous fluids 2.2.6 Ⅵscous fluids 2.3 Kelvin-Helmholtz instability 2.3.1 Instability of annular incompressible jet 2.3.2 Rotating jets 2.3.3 Supersonic viscous jet 2.3.4 Supersonic viscous jet with Gaussian sound velocity distribution 2.3.5 Relativistic jet 2.4 Exercises bliography 3 Models for Turbulence 3.1 Symmetries and conservation laws 3.1.1 Euler and Navier—Stokes equations 3.1.2 Symmetries 3.1.3 Conservation laws 3.2 Anomalous scaling exponents 3.2.1 Multifractal models 3.2.2 Random variables and correlation functions 3.2.3 Richardson-Kolmogorov concept of turbulence 3.2.4 Scaling of the structure hmctions 3.2.5 Dissipative and dynamical scaling 3.2.6 Fusion rules in turbulence systems 3.3 Calculation of scaling exponents 3.3.1 Basic formulas 3.4 Bifurcations for the Kuramoto-Sivashinsky equation 3.4.1 Symmetry:translations, reflections, and O(2)-equivariance 3.4.2 Kuramoto-Sivashinsky equation 3.5 Strange attractors and turbulence 3.5.1 The Taylor—Couette experiment 3.5.2 Dynamical systems with one observable 3.5.3 Limit capacity and dimension 3.5.4 Dimension and entropy 3.6 Global attractor for Navier-Stokes equation 3.6.1 The ladder inequality 3.6.2 Estimates 3.6.3 Length scales in the two-dimensional case 3.6.4 Three-dimensional regularity 3.6.5 The attractor dimension 3.7 Hierarchical sheU models 3.7.1 Gledzer-Ohkitani-Yamada shell model 3.7.2 (N,£)-sabra shell models 3.7.3 Navier-Stokes equations in the common wavelets repre |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。