内容推荐 全书分为三个部分:?第1章:从零开始介绍强化学习的背景知识,介绍环境库Gym的使用。?第2~15章:基于折扣奖励离散时间Markov决策过程模型,介绍强化学习的主干理论和常见算法。采用数学语言推导强化学习的基础理论,进而在理论的基础上讲解算法,并为算法提供配套代码实现。基础理论的讲解突出主干部分,算法讲解全面覆盖主流的强化学习算法,包括经典的非深度强化学习算法和近年流行的强化学习算法。Python实现和算法讲解一一对应,对于深度强化学习算法还给出了基于TensorFlow 2和PyTorch 1的对照实现。?第16章:介绍其他强化学习模型,包括平均奖励模型、连续时间模型、非齐次模型,半Markov模型、部分可观测模型等,以便更好了解强化学习研究的全貌。 导语 携七大优势,带你一书学透强化学习,掌握ChatGPT背后的关键技术。1)内容完备:完整地介绍了主流强化学习理论,全面覆盖主流强化学习算法,包括了资格迹等经典算法和MuZero等深度强化学习算法,且给出主要定理的证明过程。让你参透ChatGPT背后的关键技术。2)表述一致:全书采用统一的数学符号,并兼容主流强化学习教程。3)配套丰富:每章都配有知识点总结、代码和习题。4)环境全面:既有Gym的内置环境,也有在Gym基础上进一步扩展的第三方环境,还带领读者一起实现了自定义的环境。5)兼容广泛:所有代码均可在Windows、macOS、Linux上运行,提供安装和配置方法。同时,为深度强化学习相关算法提供了TensorFlow和PyTorch的对照实现,学习方案任你选择。6)硬件要求低:所有代码均可在没有GPU的个人计算机上运行,也可以在线查阅运行结果。7)版权输出:本书内容受到国际知名出版社Springer和评审专家认可,英文版同步输出,以飨读者。 |