![]()
内容推荐 第1章简要回顾了受控核聚变的主要概念,并结合其概念的简单性和美丽性讨论它们的前景。第2章描述了理想MHD方程以及它们与已知的新发展的多平行流体磁流体理论的关系。MHD均衡理论在第3章中进行了描述,特别讨论了X点物理学,并指出了其非分析的特征。第4章描述了MHD能量原理,以及它对各种场景的最小化,比如给出了交换和气球模。第5章描述了实空间和复空间中的MHD谱理论,本章还描述了连续模式、准模式、相混合和Alfven共振加热。第6章展示了Tokamak配置(结构)中的MHD稳定性的解析理论,特别是与互换、剥离、气球、环形Alfven和kink-type模式相关的单层理论。第7章描述了内部和外部模式的全局稳定性计算。最后一章是结束语。 本书旨在概述该领域的最新研究进展,并将前沿研究工作与等离子体物理教科书联系起来。 目录 Preface Acknowledgements Author biography 1 Fusion energy: concepts and prospects 1.1 Nuclear fusion and Lawson's criterion 1.2 Magnetic confinement 1.2.1 Tokamaks 1.2.2 Stellarators 1.2.3 Rotating theta-pinched mirrors 1.3 Inertial confinement References 2 Ideal magnetohydrodynamic (MHD) equations and multi-parallel-fluid MHD theory 2.1 Moments of the kinetic equation 2.1.1 Continuity equation 2.1.2 Momentum equation 2.1.3 Energy equation 2.1.4 Entropy equation and adiabatic assumption 2.2 Ideal MHD equations 2.3 Multi-parallel-fluid MHD theory References 3 Magnetohydrodynamic (MHD) equilibrium 3.1 Flux coordinates for symmetric system 3.2 Grad-Shafranov equation 3.3 Green function and free boundary equilibrium 3.4 Solovev solution and modification 3.5 Local equilibrium near the X-point 3.6 Numerical solution of Grad-Shafranov equation: ATEQ code 3.7 Mirror equilibrium References 4 Ideal magnetohydrodynamic (MHD) energy principle 4.1 Linear ideal MHD energy principle 4.2 Energy minimization for localized interchange modes 4.3 Energy minimization for high-n modes 4.4 Energy principle for tokamak geometry 4.4.1 Plasma energy 4.4.2 Vacuum energy 4.5 Energy principle in cylinder model References 5 Magnetohydrodynamic (MHD) mode spectrum in tokamaks 5.1 Singular differential equation in the MHD system 5.2 Alfven continuum theory in the real space 5.3 Continuum theory in the complex space: quasi-lnodes 5.4 Initial value problem: phase mixing 5.5 lnhomogeneous boundary value problem: plasma heating 5.6 Tokamak global MHD spectrum References 6 Magnetohydrodynamic (MHD) stability theory in tokamaks 6.1 Radially localized modes: Mercier criterion 6.2 External radially localized modes: peeling modes 6.3 Ballooning modes 6.3.1 Ballooning mode representation and equations 6.3.2 Asymptotic behavior 6.3.3 Steep-pressure-gradient equilibrium model 6.4 Toroidal Alfven eigenmodes 6.4.1 TAE theory in the configuration space 6.4.2 TAE theory in the ballooning representation space 6.5 Internal kink type of modes 6.5.1 Configuration space description 6.5.2 Ballooning representation space description References 7 Global magnetohydrodynamic (MHD) stability computation:internal and external modes 7.1 Internal modes 7.2 External kink modes 7.3 Resistive wall modes 7.3.1 Rotation stabilization 7.4 Error-field amplification 7.5 Alfven modes References 8 Concluding remarks References Appendix A: Derivation of some basic magnetohydrodynamic (MHD) formula Reference Appendix B: Acronym list |