网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 古典分析导引(英文版)(精)/美国数学会经典影印系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (美)彼得·杜伦 |
出版社 | 高等教育出版社 |
下载 | |
简介 | 内容推荐 本书对古典分析中的特定主题做了严格处理,提供了许多应用和示例。书中内容基于高等微积分的基本原理,不涉及复分析和Lebesgue积分等更复杂的技术,适合本科水平阅读;涵盖的主题包括:Fourier级数和积分、近似理论、Fourier公式、Γ函数、Bernoulli数和多项式、Riemann zeta函数、Tauber定理、椭圆积分、Cantor集的分支,以及微分方程的理论探讨,包括正则奇点的幂级数解、Bessel函数、超几何函数和Sturm比较理论。预备章节快速回顾了基本原理和更多的背景知识,例如无穷乘积和常用不等式。本书适合读者自学,但也可用作高等微积分课程第二学期的教材。每章末尾配有大量的练习题。历史注记讨论了数学思想的演变及其在物理中的应用。本书的特色在于穿插了重要数学家的人物小传和画像。尽管本书为本科生编写,但其他读者可以收获关于经典主题的素材,这些主题是纯粹数学和应用数学近代发展的基础。 目录 Preface Chapter 1. Basic Principles 1.1. Mathematical induction 1.2. Real numbers 1.3. Completeness principles 1.4. Numerical sequences 1.5. Infinite series 1.6. Continuous functions and derivatives 1.7. The Riemann integral 1.8. Uniform convergence 1.9. Historical remarks 1.10. Metric spaces 1.11. Complex numbers Exercises Chapter 2. Special Sequences 2.1. The number e 2.2. Irrationality of m 2.3. Euler's constant 2.4. Vieta's product formula 2.5. Wallis product formula 2.6. Stirling's formula Exercises Chapter 3. Power Series and Related Topics 3.1. General properties of power series 3.2. Abel's theorem 3.3. Cauchy products and Mertens'theorem 3.4. Taylor's formula with remainder 3.5. Newton's binomial series 3.6. Composition of power series 3.7. Euler's sum 3.8. Continuous nowhere differentiable functions Exercises Chapter 4. Inequalities 4.1. Elementary inequalities 4.2. Cauchy's inequality 4.3. Arithmetic-geometric mean inequality 4.4. Integral analogues 4.5. Jensen's inequality 4.6. Hilbert's inequality Exercises Chapter 5. Infinite Products 5.1. Basic concepts 5.2. Absolute convergence 5.3. Logarithmic series 5.4. Uniform convergence Exercises Chapter 6. Approximation by Polynomials 6.1. Interpolation 6.2. Weierstrass approximation theorem 6.3. Landau's proof 6.4. Bernstein polynomials 6.5. Best approximation 6.6. Stone–Weierstrass theorem 6.7. Refinements of Weierstrass theorem Exercises Chapter 7. Tauberian Theorems 7.1. Summation of divergent series 7.2. Tauber's theorem 7.3. Theorems of Hardy and Littlewood 7.4. Karamata's proof 7.5. Hardy's power series Exercises Chapter 8. Fourier Series 8.1. Physical origins 8.2. Orthogonality relations 8.3. Mean-square approximation 8.4. Convergence of Fourier series 8.5. Examples 8.6. Gibbs' phenomenon 8.7. Arithmetic means of partial sums 8.8. Continuous functions with divergent Fourier series 8.9. Fourier transforms 8.10. Inversion of Fourier transforms 8.11. Poisson summation formula Exercises Chapter 9. The Gamma Function 9.1. Probability integral 9.2. Gamma function 9.3. Beta function 9.4. Legendre's duplication formula 9.5. Euler's reflection formula 9.6. Infinite product representation 9.7. Generalization of Stirling's formula 9.8. Bohr-Mollerup theorem 9.9. A special integral Exercises Chapter 10. Two Topics in Number Theory 10.1. Equidistributed sequences 10.2. Weyl's criterion 10.3. The Riemann zeta function 10.4. Connection with the gamma function 10.5. Functional equation Exercises Chapter 11. Bernoulli Numbers 11.1. Calculation of Bernoulli numbers 11.2. Sums of positive powers 11.3. Euler's sums 11.4. Bernoulli polynomials 11.5. Euler-Maclaurin summation formula 11.6. Applications of Euler-Maclaurin formula Exercises Chapter 12. The Cantor Set 12.1. Cardinal numbers 12.2. Lebesgue measure 12.3. The Cantor set 12.4. The Cantor-Scheeffer function 12.5. Space-filling curves Exercises Chapter 13. Differential Equations 13.1. Existence and uniqueness of solutions 13.2. Wronskians 13.3. Power series solutions 13.4. Bessel functions 13.5. Hypergeometric functions 13.6. Oscillation and comparison theorems 13.7. Refinements of Sturm's theory Exercises Chapter 14. Elliptic Integrals 14.1. Standard forms 14.2. Fagnano's duplication formula 14.3. The arithmetic-geometric mean 14.4. The Legendre relation Exercises Index of Names Subject Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。