网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 经典自守形式专题(英文版)(精)/美国数学会经典影印系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (波)亨里克·伊万涅茨 |
出版社 | 高等教育出版社 |
下载 | ![]() |
简介 | 内容推荐 《经典自守形式专题(英文版)(精)》是基于作者亨里克·伊万涅茨于1994年秋和1995年春在Rutgers大学的研究生课程的讲义发展而来。主要目的是向读者提供多种视角来了解自守形式理论。除了对理论中熟知的专题做详细且常常是非标准的阐述外,还特别关注诸如θ-函数以及二次型表示这些课题。本书的读者包括数论和相关的代数几何方向的研究生和数学家。 目录 Preface Chapter 0. Introduction Chapter 1. The Classical Modular Forms 1.1. Periodic functions 1.2. Elliptic functions 1.3. Modular functions 1.4. The Fourier expansion of Eisenstein series 1.5. The modular group 1.6. The linear space of modular forms Chapter 2. Automorphic Forms in General 2.1. The hyperbolic plane 2.2. The classification of motions 2.3. Discrete groups -- Fuchsian groups 2.4. Congruence groups 2.5. Double coset decomposition 2.6. Multiplier systems 2.7. Automorphic forms 2.8. The eta-function and the theta-function Chapter 3. The Eisenstein and the Poincare Series 3.1. General Poincare series 3.2. Fourier expansion of Poincare series 3.3. The Hilbert space of cusp forms Chapter 4. Kloosterman Sums 4.1. General Kloosterman sums 4.2. Kloosterman sums for congruence groups 4.3. The classical Kloosterman sums 4.4. Power-moments of Kloosterman sums 4.5. Sums of Kloosterman sums 4.6. The Salie sums Chapter 5. Bounds for the Fourier Coefficients of Cusp Forms 5.1. General estimates 5.2. Estimates by Kloosterman sums 5.3. Coefficients of cusp forms with theta multiplier 5.4. Linear forms in Fourier coefficients of cusp forms 5.5. Spectral analysis of the diagonal symbol Chapter 6. Hecke Operators 6.1. Introduction 6.2. Hecke operators Tn 6.3. The Hecke operators on periodic functions 6.4. The Hecke operators for the modular group 6.5. The Hecke operators with a character 6.6. An overview of newforms 6.7. Hecke eigencuspforms for a primitive character 6.8. Final remarks Chapter 7. Automorphic L-functions 7.1. Introduction 7.2. The Hecke L-functions 7.3. Twisting automorphic forms and L-functions 7.4. Converse theorems Chapter 8. Cusp Forms Associated with Elliptic Curves 8.1. The Hasse-Weil L-function 8.2. Elliptic curves Er 8.3. Computing λ(p) 8.4. A Hecke Grossencharacter 8.5. A theta series 8.6. The automorphy of f Chapter 9. Spherical Functions 9.1. Positive definite quadratic forms 9.2. Space spherical functions 9.3. The spherical functions reconsidered 9.4. Harmonic analysis on the sphere Chapter 10. Theta Functions 10.1. Introduction 10.2. An inversion formula 10.3. The congruent theta functions 10.4. The automorphy of theta functions 10.5. The standard theta function Chapter 11. Representations by Quadratic Forms 11.1. Introduction 11.2. Siegel's mass formula 11.3. Representations by Eisenstein series and cusp forms 11.4. The circle method after Kloosterman 11.5. The singular series 11.6. Equidistribution of integral points on ellipsoids Chapter 12. Automorphic Forms Associated with Number Fields 12.1. Automorphic forms attached to Dirichlet L-functions 12.2. Hecke L-functions with Grossencharacters 12.3. Automorphic forms associated with quadratic fields 12.4. Class group L-functions reconsidered 12.5. L-functions for genus characters 12.6. Automorphic forms of weight one Chapter 13. Convolution L-functions 13.1. Introduction 13.2. Rankin-Selberg integrals 13.3. Selberg's theory of Eisenstein series 13.4. Statement of general results 13.5. The scattering matrix for Γ0(N) 13.6. Functional equations for the convolution L-functions 13.7. Metaplectic Eisenstein series 13.8. Symmetric power L-functions Bibliography Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。