格拉法克斯编著的《现代傅里叶分析》的作品旨在为读者提供学习欧几里得调和解析领域的理论基础。原始版本是以单卷集发布的,但是由于其体积、范围和新材料的增加,第二版改为两卷集发行。目前的这个版本包括了新的一章讲述时频分析和Carleson-Hunt定理。第一卷包括一些基础经典话题,包括插值、傅里叶级数、傅里叶变换、极大值函数、奇异积分和Littlewood-Paley定理。第二卷包括更多现代话题,如函数空间、原子分解、非卷积型的奇异积分和权重不等式。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 现代傅里叶分析(第2版)(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | (美)格拉法克斯 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 格拉法克斯编著的《现代傅里叶分析》的作品旨在为读者提供学习欧几里得调和解析领域的理论基础。原始版本是以单卷集发布的,但是由于其体积、范围和新材料的增加,第二版改为两卷集发行。目前的这个版本包括了新的一章讲述时频分析和Carleson-Hunt定理。第一卷包括一些基础经典话题,包括插值、傅里叶级数、傅里叶变换、极大值函数、奇异积分和Littlewood-Paley定理。第二卷包括更多现代话题,如函数空间、原子分解、非卷积型的奇异积分和权重不等式。 目录 6 smoothness and function spaces 6.1 riesz and bessel potentials, fractional integrals 6.1.1 riesz potentials 6.1.2 bessel potentials exercises 6.2 sobolev spaces 6.2.1 definition and basic properties of general sobolev spaces 6.2.2 littlewood-paley characterization of inhomogeneous sobolev spaces 6.2.3 littlewood-paley characterization of homogeneous sobolev spaces exercises 6.3 lipschitz spaces 6.3.1 introduction to lipschitz spaces 6.3.2 littlewood-paley characterization of homogeneous lipschitz spaces 6.3.3 littlewood-paley characterization of inhomogeneous lipschitz spaces exercises 6.4 hardy spaces 6.4.1 definition of hardy spaces 6.4.2 quasinorm equivalence of several maximal functions 6.4.3 consequences of the characterizations of hardy spaces 6.4.4 vector-valued hp and its characterizations 6.4.5 singular integrals on hardy spaces 6.4.6 the littlewood-paley characterization of hardy spaces exercises 6.5 besov-lipschitz and triebel-lizorkin spaces 6.5.1 introduction of function spaces 6.5.2 equivalence of definitions exercises 6.6 atomic decomposition 6.6.1 the space of sequences fa,qp 6.6.2 the smooth atomic decomposition of fa,q 6.6.3 the nonsmooth atomic decomposition of fa,q 6.6.4 atomic decomposition of hardy spaces exercises 6.7 singular integrals on function spaces 6.7.1 singular integrals on the hardy space ht 6.7.2 singular integrals on besov-lipschitz spaces 6.7.3 singular integrals on hp(rn) 6.7.4 a singular integral characterization ofh1 (rn) exercises 7 bmo and carleson measures 7.1 functions of bounded mean oscillation 7.1.1 definition and basic properties of bmo 7.1.2 the john-nirenberg theorem 7.1.3 consequences of theorem 7.1.6 exercises 7.2 duality between h1 and bmo exercises 7.3 nontangential maximal functions and carleson measures 7.3.1 definition and basic properties of carleson measures 7.3.2 bmo functions and carleson measures exercises 7.4 the sharp maximal function 7.4.1 definition and basic properties of the sharp maximal function 7.4.2 a good lambda estimate for the sharp function 7.4.3 interpolation using bmo 7.4.4 estimates for singular integrals involving the sharp function exercises 7.5 commutators of singular integrals with bmo functions 7.5.1 an orlicz-type maximal function 7.5.2 a pointwise estimate for the commutator 7.5.3 lp boundedness of the commutator exercises z 8 singular integrals of nonconvolution type 8.1 general background and the role of bmo 8.1.1 standard kernels 8.1.2 operators associated with standard kernels 8.1.3 calder6n-zygmund operators acting on bounded functions exercises 8.2 consequences of l2 boundedness 8.2.1 weaktype (1, i) and/_,p boundedness of singular integrals 8.2.2 boundedness of maximal singular integrals 8.2.3 h1 → l1 and l∞→bmo boundedness of singular integrals exercises 8.3 the t(1) theorem 8.3.1 preliminaries and statement of the theorem 8.3.2 the proof of theorem 8.3.3 8.3.3 an application exercises 8.4 paraproducts 8.4.1 introduction to paraproducts 8.4.2 l2 boundedness of paraproducts 8.4.3 fundamental properties of paraproducts exercises 8.5 an almost orthogonality lemma and applications 8.5.1 the cotlar-knapp-stein almost orthogonality lemma 8.5.2 an application 8.5.3 almost orthogonality and the t(1) theorem 8.5.4 pseudodifferential operators exercises 8.6 the cauchy integral of caldertn and the t(b) theorem 8.6.1 introduction of the cauchy integral operator along a lipschitz curve 8.6.2 resolution of the cauchy integral and reduction of its l2 boundedness to a quadratic estimate 8.6.3 a quadratic t(1) type theorem 8.6.4 a t(b) theorem and the l2 boundedness of the cauchy integral exercises 8.7 square roots of elliptic operators 8.7.1 preliminaries and statement of the main result 8.7.2 estimates for elliptic operators on rn 8.7.3 reduction to a quadratic estimate 8.7.4 reduction to a carleson measure estimate 8.7.5 the t(b) argument 8.7.6 the proof of lemma 8.7.9 exercises 9 weighted inequalities 9.1 the at, condition 9.1.1 motivation for the at, condition 9.1.2 properties of at, weights exercises 9.2 reverse htlder inequality and consequences 9.2.1 the reverse helder property of at, weights 9.2.2 consequences of the reverse holder property exercises 9.3 the a∞ condition 9.3.1 the class of a∞ weights 9.3.2 characterizations of a∞ weights exercises 9.4 weighted norm inequalities for singular integrals 9.4.1 a review of singular integrals 9.4.2 a good lambda estimate for singular integrals 9.4.3 consequences of the good lambda estimate 9.4.4 necessity of the at, condition exercises 9.5 further properties of ap weights 9.5.1 factorization of weights 9.5.2 extrapolation from weighted estimates on a single d~0 9.5.3 weighted inequalities versus vector-valued inequalities exercises 10 boundedness and convergence of fourier integrals 10.1 the multiplier problem for the ball 10.1.1 sprouting of triangles 10.1.2 the counterexample exercises 10.2 bochner-riesz means and the carleson-sjolin theorem 10.2.1 the bochner-riesz kernel and simple estimates 10.2.2 the carleson-sj01in theorem 10.2.3 the kakeya maximal function 10.2.4 boundedness of a square function 10.2.5 the proof of lemma 10.2.5 exercises 10.3 kakeya maximal operators 10.3.1 maximal functions associated with a set of directions 10.3.2 the boundedness of σn on lp(r2) 10.3.3 the higher-dimensional kakeya maximal operator exercises 10.4 fourier transform restriction and bochner-riesz means 10.4.1 necessary conditions for rp→q(sn-1) to hold 10.4.2 a restriction theorem for the fourier transform 10.4.3 applications to bochner-riesz multipliers 10.4a the full restriction theorem on r2 exercises 10.5 almost everywhere convergence of bochner-riesz means 10.5.1 a counterexample for the maximal bochner-riesz operator 10.5.2 almost everywhere summability of the bochner-riesz means 10.5.3 estimates for radial multipliers exercises 11 time--frequency analysis and the carleson-hunt theorem 11.1 almost everywhere convergence of fourier integrals 11.1.1 preliminaries 11.1.2 discretization of the carleson operator 11.1.3 linearization of a maximal dyadic sum 11.1.4 iterative selection of sets of tiles with large mass and energy 11.1.5 proof of the mass lemma 11.1.8 11.1.6 proof of energy lemma 11.1.9 11.1.7 proof of the basic estimate lemma 11.1.10 exercises 11.2 distributional estimates for the carleson operator 1.2.1 the main theorem and preliminary reductions 11.2.2 the proof of estimate (11.2.8) 11.2.3 the proof of estimate (11.2.9) 11.2.4 the proof of lemma 11.2.2 exercises 11.3 the maximal carleson operator and weighted estimates exercises glossary references index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。