佩里特著的《简明统计力学》是一部讲述统计力学的优秀教材,内容简明,自称体系。统计力学作为物理专业的一个很活跃的区域,并且在经济、社会行为、算法理论和进化生物等多种领域中有广泛应用。目次:导论;热动力学;基本假定;交互自由体系;相变换;重整化群;经典流;数值模拟;动力学;复系统;附录。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 简明统计力学 |
分类 | 科学技术-自然科学-物理 |
作者 | (意)佩里特 |
出版社 | 世界图书出版公司 |
下载 | ![]() |
简介 | 编辑推荐 佩里特著的《简明统计力学》是一部讲述统计力学的优秀教材,内容简明,自称体系。统计力学作为物理专业的一个很活跃的区域,并且在经济、社会行为、算法理论和进化生物等多种领域中有广泛应用。目次:导论;热动力学;基本假定;交互自由体系;相变换;重整化群;经典流;数值模拟;动力学;复系统;附录。 目录 Preface to the English Edition Preface 1 Introduction 1.1 The Subject Matter of Statistical Mechanics 1.2 Statistical Postulates 1.3 An Example: The Ideal Gas 1.4 Conclusions Recommended Reading 2 Thermodynamics 2.1 Thermodynamic Systems 2.2 Extensive Variables 2.3 The Central Problem of Thermodynamics 2.4 Entropy 2.5 Simple Problems 2.6 Heat and Work 2.7 The Fundamental Equation 2.8 Energy Scheme 2.9 Intensive Variables and Thermodynamic Potentials 2.10 Free Energy and Maxwell Relations 2.11 Gibbs Free Energy and Enthalpy 2.12 The Measure of Chemical Potential 2.13 The Koenig Born Diagram 2.14 Other Thermodynamic Potentials 2.15 The Euler and Gibbs-Duhem Equations 2.16 Magnetic Systems 2.17 Equations of State 2.18 Stability 2.19 Chemical Reactions 2.20 Phase Coexistence 2.21 The Clausius-Clapeyron Equation 2.22 The Coexistence Curve 2.23 Coexistence of Several Phases 2.24 The Critical Point 2.25 Planar Interfaces Recommended Reading 3 The Fundamental Postulate 3.1 Phase Space 3.2 Observables 3.3 The Fundamental Postulate: Entropy as Phase-Space Volume 3.4 Liouville's Theorem 3.5 Quantum States 3.6 Systems in Contact 3.7 Variational Principle 3.8 The Ideal Gas 3.9 The Probability Distribution 3.10 Maxwell Distribution 3.11 The Ising Paramagnet 3.12 The Canonical Ensemble 3.13 Generalized Ensembles 3.14 The p-T Ensemble 3.15 The Grand Canonical Ensemble 3.16 The Gibbs Formula for the Entropy 3.17 Variational Derivation of the Ensembles 3.18 Fluctuations of Uncorrelated Particles Recommended Reading 4 Interaction-Free Systems 4.1 Harmonic Oscillators 4.2 Photons and Phonons 4.3 Boson and Fermion Gases 4.4 Einstein Condensation 4.5 Adsorption 4.6 Intemal Degrees of Freedom 4.7 Chemical Equilibria in Gases Recommended Reading Phase Transitions 5.1 Liquid-Gas Coexistence and Critical Point 5.2 Van der Waals Equation 5.3. Other Singularities 5.4 Binary Mixtures 5.5 Lattice Gas 5.6 Symmetry 5.7 Symmetry Breaking 5.8 The Order Parameter 5.9 Peierls Argument 5.10 The One-Dimensional Ising Model 5.11 Duality 5.12. Mean-Field Theory 5.13 Variational Principle 5.14 Correlation Functions 5.15 The Landau Theory 5.16 Critical Exponents 5.17 The Einstein Theory of Fluctuations 5.18 Ginzburg Criterion 5.19 Universality and Scaling 5.20 Partition Function of the Two-Dimensional Ising Model Recommended Reading 6 Renormalization Group 6.1 Block Transformation 6.2 Decimation in the One-Dimensional Ising Model 6.3 Two-Dimensional Ising Model 6.4 Relevant and Irrelevant Operators 6.5 Finite Lattice Method 6.6 Renormalization in Fourier Space 6.7 Quadratic Anisotropy and Crossover 6.8 Critical Crossover 6.9 Cubic Anisotrophy 6.10 Limit n → ∞ 6.11 Lower and Upper Critical Dimensions Recommended Reading 7 Classical Fluids 7.1 Partition Function for a Classical Fluid 7.2 Reduced Densities 7.3 Virial Expansion 7.4 Perturbation Theory 7.5 Liquid Solutions Recommended Reading 8 Numerical Simulation 8.1 Introduction 8.2 Molecular Dynamics 8.3 Random Sequences 8.4 Monte Carlo Method 8.5 Umbrella Sampling 8.6 Discussion Recommended Reading 9 Dynamics 9.1 Brownian Motion 9.2 Fractal Properties of Brownian Trajectories 9.3 Smoluchowski Equation 9.4 Diffusion Processes and the Fokker-Planck Equation 9.5 Correlation Functions 9.6 Kubo Formula and Sum Rules 9.7 Generalized Brownian Motion 9.8 Time Reversal 9.9 Response Functions 9.10 Fluctuation-Dissipation Theorem 9.11 Onsager Reciprocity Relations 9.12 Affinities and Fluxes 9.13 Variational Principle 9.14 An Application Recommended Reading 10 Complex Systems 10.1 Linear Polymers in Solution 10.2 Percolation 10.3 Disordered Systems Recommended Reading Appendices Appendix A Legendre Transformation A.1 Legendre Transform A.2 Properties of the Legendre Transform A.3 Lagrange Multipliers Appendix B Saddle Point Method B.1 Euler Integrals and the Saddle Point Method B.2 The Euler Gamma Function B.3 Properties of N-Dimensional Space B.4 Integral Representation of the Delta Function Appendix C A Probability Refresher C.1 Events and Probability C.2 Random Variables C.3 Averages and Moments C.4 Conditional Probability: Independence C.5 Generating Function C.6 Central Limit Theorem C.7 Correlations Appendix D Markov Chains D.1 Introduction D.2 Definitions D.3 Spectral Properties D.4 Ergodic Properties D.5 Convergence to Equilibrium Appendix E Fundamental Physical Constants Bibliography Index |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。