网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 医学图像重建(精)
分类 科学技术-医学-临床医学
作者 (美)曾更生
出版社 高等教育出版社
下载
简介
编辑推荐

Medical Image Reconstruction A Conceptual Tutorial introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography),and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections,Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with/o-minimization are also included.

This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction.

目录

1 Basic Principles of Tomography

 1.1 Tomography

 1.2 Projection

 1.3 Image Reconstruction

 1.4 Backprojection

 * 1.5 Mathematical Expressions

1.5.1 Projection

1.5.2 Backprojection

1.5.3 The Dirac δ-function

 1.6 Worked Examples

 1.7 Summary

 Problems

 References

2 Parallel-Beam Image Reconstruction

 2.1 Fourier Transform

 2.2 Central Slice Theorem

 2.3 Reconstruction Algorithms

2.3.1 Method 1

2.3.2 Method 2

2.3.3 Method 3

2.3.4 Method 4

2.3.5 Method 5

 2.4 A Computer Simulation

 *2.5 ROI Reconstruction with Truncated Projections

 *2.6 Mathematical Expressions

2.6.1 The Fourier Transform and Convolution

2.6.2 The Hilbert Transform and the Finite Hilbert Transform

2.6.3 Proof of the Central Slice Theorem

2.6.4 Derivation of the Filtered Backprojection Algorithm

2.6.5 Expression of the Convolution Backprojection Algorithm

2.6.6 Expression of the Radon Inversion Formula

2.6.7 Derivation of the Backprojection-then-Filtering Algorithm

  2.7 Worked Examples

  2.8 Summary

Problems

References

3 Fan-Beam Image Reconstruction

 3.1 Fan-Beam Geometry and Point Spread Function

 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion

 3.3 Short Scan

 *3.4 Mathematical Expressions

3.4.1 Derivation of a Filtered Backprojection Fan-Beam Algorithm

3.4.2 A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform

 3.5 Worked Examples

 3.6 Summary

 Problems

 References

4 Transmission and Emission Tomography

 4.1 X-Ray Computed Tomography

 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography

 4.3 Attenuation Correction for Emission Tomography

 *4.4 Mathematical Expressions

 4.5 Worked Examples

 4.6 Summary

 Problems

 References

5 3D Image Reconstruction

 5.1 Parallel Line-Integral Data

5.1.1 Backprojection-then-Filtering

5.1.2 Filtered Backprojection

 5.2 Parallel Plane-Integral Data

 5.3 Cone-Beam Data

5.3.1 Feldkamp's Algorithm

5.3.2 Grangeat's Algorithm

5.3.3 Katsevich's Algorithm

 *5.4 Mathematical Expressions

5.4.1 Backprojection-then-Filtering for Parallel Line-Integral Data

5.4.2 Filtered Backprojection Algorithm for Parallel Line-Integral Data

5.4.3 3D Radon Inversion Formula

5.4.4 3D Backprojection-then-Filtering Algorithm for Radon Data

5.4.5 Feldkamp's Algorithm

5.4.6 Tuy's Relationship

5.4.7 Grangeat's Relationship

5.4.8 Katsevieh's Algorithm

 5.5 Worked Examples

 5.6 Summary

 Problems

 References

6 Iterative Reconstruction

 6.1 Solving a System of Linear Equations

 6.2 Algebraic Reconstruction Technique

 6.3 Gradient Descent Algorithms

 6.4 Maximum-Likelihood Expectation-Maximization Algorithms

 6.5 Ordered-Subset Expectation-Maximization Algorithm

 6.6 Noise Handling

6.6.1 Analytical Methods--Windowing

6.6.2 Iterative Methods--Stopping Early

6.6.3 Iterative Methods--Choosing Pixels

6.6.4 Iterative Methods--Accurate Modeling

 6.7 Noise Modeling as a Likelihood Function

 6.8 Including Prior Knowledge

 *6.9 Mathematical Expressions

6.9.1 ART

6.9.2 Conjugate Gradient Algorithm

6.9.3 ML-EM

6.9.4 OS-EM

6.9.5 Green's One-Step Late Algorithm

6.9.6 Matched and Unmatched Projector/Backprojector Pairs

 *6.10 Reconstruction Using Highly Undersampled Data with 10 Minimization

 6.11 Worked Examples

 6.12 Summary

 Problems

 References

7 MRI Reconstruction

 7.1 The "M"

 7.2 The "R"

 7.3 The "T"

7.3.1 To Obtain z-Information--Slice Selection

7.3.2 To Obtain x-Information--Frequency Encoding

7.3.3 To Obtain y-Information--Phase Encoding

 *7.4 Mathematical Expressions

 7.5 Worked Examples

 7.6 Summary

 Problems

 References

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/3/31 23:22:47