网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 广义相对论的3+1形式--数值相对论基础(影印版)/引进系列/中外物理学精品书系
分类 科学技术-自然科学-物理
作者 (法)古尔古隆
出版社 北京大学出版社
下载
简介
目录

1 Introduction

 References

2 Basic Differential Geometry

 2.1 Introduction

 2.2 Differentiable Manifolds

 2.2.1 Notion of Manifold

 2.2.2 Vectors on a Manifold

 2.2.3 Linear Forms

 2.2.4 Tensors

 2.2.5 Fields on a Manifold

 2.3 Pseudo-Riemannian Manifolds

 2.3.1  Metric Tensor

 2.3.2  Signature and Orthonormal Bases

 2.3.3  Metric Duality

 2.3.4  Levi-Civita Tensor

 2.4 Covariant Derivative

 2.4.1 Affine Connection on a Manifold

 2.4.2 Levi-Civita Connection

 2.4.3 Curvature

 2.4.4 Weyl Tensor

 2.5 Lie Derivative

 2.5.1 Lie Derivative of a Vector Field

 2.5.2 Generalization to Any Tensor Field

 References

3 Geometry of Hypersurfaees

 3.1 Introduction

 3.2 Framework and Notations

 3.3 Hypersurface Embedded in Spacetime

 3.3.1 Definition

 3.3.2 Normal Vector

 3.3.3 Intrinsic Curvature

 3.3.4 Extrinsic Curvature

 3.3.5 Examples: Surfaces Embedded in the Euclidean Space R3

 3.3.6 An Example in Minkowski Spacetime: The Hyperbolic Space H3

 3.4 Spacelike Hypersurfaces

 3.4.1 The Orthogonal Projector

 3.4.2 Relation Between K and Vn

 3.4.3 Links Between the ▽ and D Connections

 3.5 Gauss-Codazzi Relations

 3.5.1 Gauss Relation

 3.5.2 Codazzi Relation

 References

4 Geometry of Foliations

 4.1 Introduction

 4.2 Globally Hyperbolic Spacetimes and Foliations

 4.2.1 Globally Hyperbolic Spacetimes

 4.2.2 Definition of a Foliation

 4.3 Foliation Kinematics

 4.3.1 Lapse Function

 4.3.2 Normal Evolution Vector

 4.3.3 Eulerian Observers

 4.3.4 Gradients of n and m

 4.3.5 Evolution of the 3-Metric

 4.3.6 Evolution of the Orthogonal Projector

 4.4 Last Part of the 3+1 Decomposition of the Riemann Tensor.

 4.4.1 Last Non Trivial Projection of the Spacetime Riemann Tensor

 4.4.2 3+1 Expression of the Spacetime Scalar Curvature.

 References

5 3+1 Decomposition of Einstein Equation

 5.1 Einstein Equation in 3+1 form

 5.1.1 The Einstein Equation

 5.1.2 3+1 Decomposition of the Stress-Energy Tensor ..

 5.1.3 Projection of the Einstein Equation

 5.2 Coordinates Adapted to the Foliation

 5.2.1 Definition

 5.2.2 Shift Vector

 5.2.3 3+1 Writing of the Metric Components

 5.2.4 Choice of Coordinates via the Lapse and the Shift

 5.3 3+1 Einstein Equation as a PDE System

 5.3.1 Lie Derivatives Along m as Partial Derivatives

 5.3.2 3+1 Einstein System

 5.4 The Cauchy Problem

 5.4.1 General Relativity as a Three-Dimensional Dynamical System

 5.4.2 Analysis Within Gaussian Normal Coordinates

 5.4.3 Constraint Equations

 5.4.4 Existence and Uniqueness of Solutions to the Cauchy Problem

 5.5 ADM Hamiltonian Formulation

 5.5.1  3+1 form of the Hilbert Action

 5.5.2  Hamiltonian Approach

 References

6 3+1 Equations for Matter and Electromagnetic Field

 6.1 Introduction

 6.2 Energy and Momentum Conservation

 6.2.1 3+1 Decomposition of the 4-Dimensional Equation

 6.2.2 Energy Conservation

 6.2.3 Newtonian Limit

 6.2.4 Momentum Conservation

 6.3 Perfect Fluid

 6.3.1 Kinematics

 6.3.2 Baryon Number Conservation

 6.3.3 Dynamical Quantities

 6.3.4 Energy Conservation Law

 6.3.5 Relativistic Euler Equation

 6.3.6 Flux-Conservative Form

 6.3.7 Further Developments

 6.4 Electromagnetism

 6.4.1 Electromagnetic Field

 6.4.2 3+1 Maxwell Equations

 6.4.3 Electromagnetic Energy, Momentum and Stress...

 6.5 3+1 Ideal Magnetohydrodynamics

 6.5.1 Basic Settings

 6.5.2 Maxwell Equations

 6.5.3 Electromagnetic Energy, Momentum and Stress...

 6.5.4 MHD-Euler Equation

 6.5.5 MHD in Flux-Conservative Form

 References

7 Conformal Decomposition

 7.1 Introduction

 7.2 Conformal Decomposition of the 3-Metric

 7.2.1 Unit-Determinant Conformal "Metric"

 7.2.2 Background Metric

 7.2.3 Conformal Metric

 7.2.4 Conformal Connection

 7.3 Expression of the Ricci Tensor

 7.3.1 General Formula Relating the Two Ricci Tensors

 7.3.2 Expression in Terms of the Conformal Factor

 7.3.3 Formula for the Scalar Curvature

 7.4 Conformal Decomposition of the Extrinsic Curvature

 7.4.1 Traceless Decomposition

 7.4.2 Conformal Decomposition of the Traceless Part

 7.5 Conformal Form of the 3+1 Einstein System

 7.5.1 Dynamical Part of Einstein Equation

 7.5.2 Hamiltonian Constraint

 7.5.3 Momentum Constraint

 7.5.4 Summary: Conformal 3+1 Einstein System

 7.6 Isenberg-Wilson-Mathews Approximation to General Relativity

 References

8 Asymptotic Flatness and Global Quantifies

 8.1 Introduction

 8.2 Asymptotic Flatness

 8.2.1 Definition

 8.2.2 Asymptotic Coordinate Freedom

 8.3 ADM Mass

 8.3.1 Definition from the Hamiltonian Formulation of GR

 8.3.2 Expression in Terms of the Conformal Decomposition

 8.3.3 Newtonian Limit

 8.3.4 Positive Energy Theorem

 8.3.5 Constancy of the ADM Mass

 8.4 ADM Momentum

 8.4.1 Definition

 8.4.2 ADM 4-Momentum

 8.5 Angular Momentum

 8.5.1 The Supertranslation Ambiguity

 8.5.2 The "Cure".

 8.5.3 ADM Mass in the Quasi-Isotropic Gauge

 8.6 Komar Mass and Angular Momentum

 8.6.1 Komar Mass

 8.6.2 3+1 Expression of the Komar Mass and Link with the ADM Mass

 8.6.3 Komar Angular Momentum

 References

9 The Initial Data Problem

 9.1 Introduction

 9.1.1 The Initial Data Problem

 9.1.2 Conformal Decomposition of the Constraints

 9.2 Conformal Transverse-Traceless Method

 9.2.1 Longitudinal / Transverse Decomposition of A ij

 9.2.2 Conformal Transverse-Traceless Form of the Constraints

 9.2.3 Decoupling on Hypersurfaces of Constant Mean Curvature

 9.2.4 Existence and Uniqueness of Solutions to Lichnerowicz Equation

 9.2.5 Conformally Flat and Momentarily Static Initial Data

 9.2.6 Bowen-York Initial Data

 9.3 Conformal Thin Sandwich Method

 9.3.1 The Original Conformal Thin Sandwich Method .

 9.3.2 Extended Conformal Thin Sandwich Method

 9.3.3 XCTS at Work: Static Black Hole Example

 9.3.4 Uniqueness Issue

 9.3.5 Comparing CTT, CTS and XCTS

 9.4 Initial Data for Binary Systems

 9.4.1 Helical Symmetry

 9.4.2 Helical Symmetry and IWM Approximation

 9.4.3 Initial Data for Orbiting Binary Black Holes

 9.4.4 Initial Data for Orbiting Binary Neutron Stars

 9.4.5 Initial Data for Black Hole: Neutron Star Binaries.

 References

10 Choice of Foliation and Spatial Coordinates

 10.1 Introduction

 10.2 Choice of Foliation

 10.2.1 Geodesic Slicing

 10.2.2 Maximal Slicing

 10.2.3 Harmonic Slicing

 10.2.4 1+log Slicing

 10.3 Evolution of Spatial Coordinates

 10.3.1 Normal Coordinates

 10.3.2 Minimal Distortion

 10.3.3 Approximate Minimal Distortion

 10.3.4 Gamma Freezing

 10.3.5 Gamma Drivers

 10.3.6 Other Dynamical Shift Gauges

 10.4 Full Spatial Coordinate-Fixing Choices

 10.4.1 Spatial Harmonic Coordinates

 10.4.2 Dirac Gauge

 References

11 Evolution schemes

 11.1 Introduction

 11.2 Constrained Schemes

 11.3 Free Evolution Schemes

11.3.1 Definition and Framework

11.3.2 Propagation of the Constraints

11.3.3 Constraint-Violating Modes

11.3.4 Symmetric Hyperbolic Formulations

 11.4 BSSN Scheme

11.4.1 Introduction

11.4.2 Expression of the Ricci Tensor of the Conformal Metric

11.4.3 Reducing the Ricci Tensor to a Laplace Operator

11.4.4 The Full Scheme

11.4.5 Applications

 References

Appendix A: Conformal Killing Operator and Conformal Vector Laplacian

Appendix B: Sage Codes

Index

编辑推荐

古尔古隆著的《广义相对论的3+1形式--数值相对论基础(影印版)》详细地讲解了3+1形式的广义相对论和数值相对论基础。本书从研究相对论所必备的数学工具,如微分几何、超曲面的嵌入等讲起,逐步引入了爱因斯坦方程、物质和电磁场方程等的3+1分解。之后,通过更高等的数学工具,如共形变换等,讨论了现代相对论的一些重要问题。

内容推荐
本书详细地讲解了3+1形式的广义相对论和数值相对论基础。从研究相对论所必备的数学工具如微分几何、超曲面的嵌入等讲起,逐步引入了爱因斯坦方程、物质和电磁场方程等的3+1分解。之后通过更高等的数学工具,如共形变换等,讨论了现代相对论的一些重要问题。
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/6 23:29:39