本书是数论领域的一部传世名著,也是现代数学大师哈代的代表作之一。书中作者从多个角度对数论进行了深入阐述,内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分划等。新版由第二作者在每章末尾增写了评注,更便于读者阅读。虽然是为数学专业的人士所写,但是大学一年级学生也能读懂。
本书自出版以来一直备受学界推崇,被很多知名大学,如牛津大学、麻省理工学院、加州大学伯克利分校等指定为教材或参考书,也是美国斯坦福大学每个数学与计算机科学专业学生必读的一本书。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 数论导引(英文版第5版)/图灵原版数学统计学系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (英)哈代//(英)爱德华//(英)莱特 |
出版社 | 人民邮电出版社 |
下载 | ![]() |
简介 | 编辑推荐 本书是数论领域的一部传世名著,也是现代数学大师哈代的代表作之一。书中作者从多个角度对数论进行了深入阐述,内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分划等。新版由第二作者在每章末尾增写了评注,更便于读者阅读。虽然是为数学专业的人士所写,但是大学一年级学生也能读懂。 本书自出版以来一直备受学界推崇,被很多知名大学,如牛津大学、麻省理工学院、加州大学伯克利分校等指定为教材或参考书,也是美国斯坦福大学每个数学与计算机科学专业学生必读的一本书。 内容推荐 本书是一本经典的数论名著的第5版,书的内容成于作者在牛津大学、剑桥大学等大学讲课的讲义,从各个不同角度对数论进行了阐述,包括素数、无理数、同余、Fermat定理、同余式、连分数、不定式、二次域、算术函数、分划等等。第二作者为此书每章增加了必要的注解,便于读者理解并进一步学习。 本书读者对象为大学数学专业学生以及对数论感兴趣的专业人士。 目录 I. THE SERIES OF PRIMES(1) 1.1. Divisibility of integers 1 1.2. Prime numbers 1 1.3. Statement of the fundamental theorem of arithmetic 3 1.4. The sequence of primes 3 1.5. Some questions concerning primes 5 1.6. Some notations 7 1.7. The logarithmic function 8 1.8. Statement of the prime number theorem 9 II. THE SERIES OF PRIMES(2) 2.1. First proof of Euclid's second theorem 12 2.2. Further deductions from Euclid's argument 12 2.3. Primes in certain arithmetical progressions 13 2.4. Second proof of Euclid's theorem 14 2.5. Fermat's and Mersenne's numbers 14 2.6. Third proof of Euclid's theorem 16 2.7. Further remarks on formulae for primes 17 2.8. Unsolved problems concerning primes 19 2.9. Moduli of integers 19 2.10. Proof of the fundamental theorem of arithmetic 21 2.11. Another proof of the fundamental theorem 21 III. FAREY SERIES AND A THEOREM OF MINKOWSKI 3.1. The definition and simplest properties of a Farey series 23 3.2. The equivalence of the two characteristic properties 24 3.3. First proof of Theorems 28 and 29 24 3.4. Second proof of the theorems 25 3.5. The integral lattice 26 3.6. Some simple properties of the fundamental lattice 27 3.7. Third proof of Theorems 28 and 29 29 3.8. The Farey dissection of the continuum 29 3.9. A theorem of Minkowski 31 3.10. Proof of Minkowski's theorem 32 3.11. Developments of Theorem 37 34 IV. IRRATIONAL NUMBERS 4.1. Some generalities 38 4.2. Numbers known to be irrational 38 4.3. The theorem of Pythagoras and its generalizations 39 4.4. The use of the fundamental theorem in the proofs of Theorems 43-45 41 4.5. A historical digression 42 4.6. Geometrical proof of the irrationality of √5 44 4.7. Some more irrational numbers 45 V. CONGRUENCES AND RESIDUES 5.1. Highest common divisor and least common multiple 48 5.2. Congruences and classes of residues 49 5.3. Elementary properties of congruences 50 5.4. Linear congruences 51 5.5. Euler's function φ(m) 52 5.6. Applications of Theorems 59 and 61 to trigonometrical sums 54 5.7. A general principle 57 5.8. Construction of the regular polygon of 17 sides 57 VI. FERMAT'S THEOREM AND ITS CONSEQUENCES 6.1. Fermat's theorem 63 6.2. Some properties of binomial coefficients 63 6.3. A second proof of Theorem 72 65 6.4. Proof of Theorem 22 66 6.5. Quadratic residues 67 6.6. Special cases of Theorem 79: Wilson's theorem 68 6.7. Elementary properties of quadratic residues and non-residues 69 6.8. The order of a (mod m) 71 6.9. The converse of Fermat's theorem 71 6.10. Divisibility of 2p-1-1 by p2 72 6.11. Gauss's lemma and the quadratic character of 2 73 6.12. The law of reciprocity 76 6.13. Proof of the law of reciprocity 77 6.14. Tests for primality 78 6.15. Factors of Mersenne numbers; a theorem of Euler 80 VII. GENERAL PROPERTIES OF CONGRUENCES 7.1. Roots of congruences 82 7.2. Integral polynomials and identical congruences 93 7.3. Divisibility of polynomials (mod m) 83 7.4. Roots of congruences to a prime modulus 84 7.5. Some applications of the general theorems 85 7.6. Lagrange's proof of Fermat's and Wilson's theorems 87 7.7. The residue of {1/2(p-1 )} ! 87 7.8. A theorem of Wolstenholme 88 7.9. The theorem of yon Staudt 90 7.10. Proof of yon Staudt's theorem 91 VIII. CONGRUENCES TO COMPOSITE MODULI 8.1. Linear congruences 94 8.2. Congruences of higher degree 95 8.3. Congruences to a prime-power modulus 96 8.4. Examples 97 8.5. Bauer's identical congruence 98 8.6. Bauer's congruence: the case p=2 100 8.7. A theorem of Leudesdorf 100 8.8. Further consequences of Bauer's theorem 102 8.9. The residues of 2p-l and (p-1)! to modulus pZ 104 IX. THE REPRESENTATION OF NUMBERS BY DECIMALS 9.1. The decimal associated with a given number 107 9.2. Terminating and recurring decimals 109 9.3. Representation of number8 in other scales 111 9.4. Irrationals defined by decimals 112 9.5. Tests for divisibility 114 9.6. Decimals with the maximum period 114 9.7. Bachet's problem of the weights 115 9.8. The game of Nim 117 9.9. Integers with missing digits 120 9.10. Sets of measure zero 121 9.11. Decimals with missing digits 122 9.12. Normal numbers 124 9.13. Proof that almost all numbers are normal 125 X. CONTINUED FRACTIONS 10.1. Finite continued fractions 129 10.2. Convergents to a continued fraction 130 10.3. Continued fractions with positive quotients 131 10.4. Simple continued fractions 132 10.5. The representation of an irreducible rational fraction by a simple continued fraction 133 10.6. The continued fraction algorithm and Euclid's algorithm 134 10.7. The difference between the fraction and its convergents 136 10.8. Infinite simple continued fractions 138 10.9. The representation of an irrational number by an infinite continued fraction 139 10.10. A lemma 140 10.11. Equivalent numbers 141 10.12. Periodic continued fractions 143 10.13. Some special quadratic surds 146 10.14. The series of Fibonacci and Lucas 148 10.15. Approximation by convergents 151 XI. APPROXIMATION OF IRRATIONALS BY RATIONALS 11.1. Statement of the problem 154 11.2. Generalities concerning the problem 155 11.3. An argument of Dirichlet 156 11.4. Orders of approximation 158 11.5. Algebraic and transcendental numbers 159 11.6. The existence of transcendental numbers 160 11.7. Liouville's theorem and the construction of transcendental numbers 161 11.8. The measure of the closest approximations to an arbitrary irrational 163 11.9. Another theorem concerning the convergents to a continued fraction 164 11.10. Continued fractions with bounded quotients 165 11.11. Further theorems concerning approximation 168 11.12. Simultaneous approximation 169 11.13. The transcendence of e 170 11.14. The transcendence of π 173 X II. THE FUNDAMENTAL THEOREM OF ARITHMETIC IN k(l),k(i),AND k(ρ) 12.1. Algebraic numbers and integers 178 12.2. The rational integers, the Gaussian integers, and the integers of k(ρ) 178 12.3. Euclid's algorithm 179 12.4. Application of Euclid's algorithm to the fundamental theorem 180 12.5. Historical remarks on Euclid's algorithm and the fundamental theorem 181 12.6. Properties of the Gaussian integers 182 12.7. Primes in k(i) 183 12.8. The fundamental theorem of arithmetic in k(i) 185 12.9. The integers of k(ρ) 187 XIII. SOME DIOPHANTINE EQUATIONS 13.1. Fermat's last theorem 190 13.2. The equation x2+y2=z2 190 13.3. The equation x4+y4=z4 191 13.4. The equation x3+y3=z3 192 13.5. The equation x3+y3=3z3 196 13.6. The expression of a rational as a sum of rational cubes 197 13.7. The equation x3+y3+z3=t3 199 XIV. QUADRATIC FIELDS(1) 14.1. Algebraic fields 204 14.2. Algebraic numbers and integers; primitive polynomials 205 14.3. The general quadratic field k(√m) 206 14.4. Unities and primes 208 14.5. The unities of k(√2) 209 14.6. Fields in which the fundamental theorem is false 211 14.7. Complex Euclidean fields 212 14.8. Real Euclidean fields 213 14.9. Real Euclidean fields (continued) 215 XV. QUADRATIC FIELDS(2) 15.1. The primes of k(i) 218 15.2. Fermat's theorem in k(i) 219 15.3. The primes of k(ρ) 220 15.4. The primes of k(√2) and k(√5) 221 15.5. Lucas's test for the primality of the Mersenne number M4n+s 223 15.6. General remarks on the arithmetic of quadratic fields 225 15.7. Ideals in a quadratic field 227 15.8. Other fields 230 XVI. THE ARITHMETICAL FUNCTIONS φ(n), μ(n), d(n), σ(n), r(n) 16.1. The function φ(n) 233 16.2. A further proof of Theorem 63 234 16.3. The M6bius function 234 16.4. The M6bius inversion formula 236 16.5. Further inversion formulae 237 16.6. Evaluation of Ramanujan's sum 237 16.7. The functions d(n) and σk(n) 239 16.8. Perfect numbers 239 16.9. The function r(n) 241 16.10. Proof of the formula for r(n) 242 XVII. GENERATING FUNCTIONS OF ARITHMETICAL FUNCTIONS 17.1 The generation of arithmetical functions by means of Dirichlet series 244 17.2. The zeta function 245 17.3. The behaviour of ζ(s) when s→1 246 17.4. Multiplication of Dirichlet series 248 17.5. The generating functions of some special arithmetical functions 250 17.6. The analytical interpretation of the M6bius formula 251 17.7. The function Λ(n) 253 17.8. Further examples of generating functions 254 17.9. The generating function of r(n) 256 17.10. Generating functions of other types 257 XVIII. THE ORDER OF MAGNITUDE OF ARITHMETICAL FUNCTIONS 18.1. The order of d(n) 260 18.2. The average order of d(n) 263 18.3. The order of σ(n) 266 18.4. The order of φ(n) 267 18.5. The average order of φ(n) 268 18.6. The number of squarefree numbers 269 18.7. The order of r(n) 270 XIX. PARTITIONS 19.1. The general problem of additive arithmetic 273 19.2. Partitions of numbers 273 19.3. The generating function of p(n) 274 19.4. Other generating functions 276 19.5. Two theorems of Euler 277 19.6. Further algebraical identities 280 19.7. Another formula for F(x) 280 19.8. A theorem of Jacobi 282 19.9. Special cases of Jacobi's identity 283 19.10. Applications of Theorem 353 285 19.11. Elementary proof of Theorem 358 286 19.12. Congruence properties of p(n) 287 19.13. The Rogers-Ramanujan identities 290 19.14. Proof of Theorems 362 and 363 292 19.15. Ramanujan's continued fraction 294 XX. THE REPRESENTATION OF A NUMBER BY TWO OR FOUR SQUARES 20.1. Waring's problem: the numbers g(k) and G(k) 298 20.2. Squares 299 20.3. Second proof of Theorem 366 299 20.4. Third and fourth proofs of Theorem 366 300 20.5. The four-square theorem 302 20.6. Quaternions 303 20.7. Preliminary theorems about integral quaternions 306 20.8. The highest common right-hand divisor of two quaternions 307 20.9. Prime quaternions and the proof of Theorem 370 309 20.10. The values of g(2) and G(2) 310 20.11. Lemmas for the third proof of Theorem 369 311 20.12. Third proof of Theorem 369: the number of representations 312 20.13. Representations by a larger number of squares 314 XXI. REPRESENTATION BY CUBES AND HIGHER POWERS 21.1. Biquadrates 317 21.2. Cubes: the existence of G(3) and g(3) 318 21.3. A bound for g(3) 319 21.4. Higher powers 320 21.5. A lower bound for g(k) 321 21.6. Lower bounds for O(k) 322 21.7. Sums affected with signs: the number v(k) 325 21.8. Upper bounds for v(k) 326 21.9. The problem of Prouhet and Tarry: the number P(k, j) 328 21.10. Evaluation of P(k, j) for particular k and j 329 21.11. Further problems of Diophantine analysis 332 XXII. THE SERIES OF PRIMES(3) 22.1. The functions υ(x) and Ψ(x) 340 22.2. Proof thatυ(x) and Ψ(x) are of order x 341 22.3. Bertrand's postulate and a 'formula' for primes 343 22.4. Proof of Theorems 7 and 9 345 22.5. Two formal transformations 346 22.6. An important sum 347 22.7. The ∑p-1 and the product ∏(1--P-1) 349 22.8. Mertens's theorem 351 22.9. Proof of Theorems 323 and 328 353 22.10. The number of prime factors of n 354 22.11. The normal order of ω(n) and Ω(n) 356 22.12. A note on round numbers 358 22.13. The normal order of d(n) 359 22.14. Selberg's theorem 359 22.15. The functions R(x) and V(ξ) 362 22.16. Completion of the proof of Theorems 434, 6 and 8 365 22.17. Proof of Theorem 335 367 22.18. Products of k prime factors 368 22.19. Primes in an interval 371 22.20. A conjecture about the distribution of prime pairs p, p+2 371 XXIII. KRONECKER'S THEOREM 23.1. Kronecker's theorem in one dimension 375 23.2. Proofs of the one-dimensional theorem 376 23.3. The problem of the reflected ray 378 23.4. Statement of the general theorem 381 23.5. The two forms of the theorem 382 23.6. An illustration 384 23.7. Lettenmeyer's proof of the theorem 384 23.8. Estermann's proof of the theorem 386 23.9. Bohr's proof of the theorem 388 23.10. Uniform distribution 390 XXIV. GEOMETRY OF NUMBERS 24.1. Introduction and restatement of the fundamental theorem 394 24.2. Simple applications 395 24.3. Arithmetical proof of Theorem 397 24.4. Best possible inequalities 399 24.5. The best possible inequality for ξ2+η2 400 24.6. The best possible inequality for ∣ξη∣ 401 24.7. A theorem concerning non-homogeneous forms 402 24.8. Arithmetical proof of Theorem 405 24.9. Tchebotaref's theorem 405 24.10. A converse of Minkowski's Theorem 407 APPENDIX 1. Another formula for Pn 414 2. A generalization of Theorem 22 414 3. Unsolved problems concerning primes 415 A LIST OF BOOKS 417 INDEX OF SPECIAL SYMBOLS AND WORDS 420 INDEX OF NAMES 423 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。