网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 二阶抛物微分方程(修订版)(英文版) |
分类 | 科学技术-自然科学-数学 |
作者 | (美)G.M.利伯曼 |
出版社 | 世界图书出版公司 |
下载 | |
简介 | 内容推荐 1977年,德国Springer出版了《二阶椭圆偏微分方程》(Elliptic Partial Differential Equations of Second Order, D. Gilbarg, S. Trudinger)。20年之后的1996年,G. M. Lieberman撰写了《二阶抛物微分方程》,成为《二阶椭圆偏微分方程》的姊妹篇。几十年来,这两部书的均成为受读者欢迎的经典教科书。 目录 PREFACE PREFACE TO REVISED EDITION Chapter Ⅰ INTRODUCTION 1.Outline of this book 2.Further remarks 3.Notation Chapter Ⅱ MAXIMUM PRINCIPLES Introduction I.The weak maximum principle 2.The strong maximum principle 3.A priori estimates Notes Exercises Chapter Ⅲ INTRODUCTION TO THE THEORY OF WEAK SOLUTIONS Introduction 1.The theory of weak derivatives 2.The method of continuity 3.Problems in small balls 4.Global existence and the Perron process Notes Exercises Chapter Ⅳ HOLDER ESTIMATES Introduction 1.Ho1der continuity 2.Campanato spaces 3.Interior estimates 4.Estimates near a flat boundary 5.Regularized distance 6.Intermediate Schauder estimates 7.Curved boundaries and nonzero boundary data 8.Two special mixed problems Notes Exercises Chapter Ⅴ EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS Introduction 1.Uniqueness of solutions 2.The Cauchy-Dirichlet problem with bounded coefficients 3.The Cauchy-Dirichlet problem with unbounded coefficients 4.The oblique derivative problem Notes Exercises Chapter Ⅵ FURTHER THEORY OF WEAK SOLUTIONS Introduction 1.Notation and basic results 2.Differentiability of weak solutions 3.Sobolev inequalities 4.Poincarf's inequality 5.Global boundedness 6.Local estimates 7.Consequences of the local estimates 8.Boundary estimates 9.More Sobolev-type inequalities 10.Conormal problems 11.A special mixed problem 12.Solvability in H61der spaces 13.The parabolic DeGiorgi classes Notes Exercises Chapter Ⅶ STRONG SOLUTIONS Introduction 1.Maximum principles 2.Basic results from harmonic analysis 3.Lp estimates for constant coefficient divergence structure equations 4.Interior Lp estimates for solutions of nondivergence form constant coefficient equations 5.An interpolation inequality 6.Interior Lp estimates 7.Boundary and global estimates 8.Wp2,1 estimates for the oblique derivative problem 9.The local maximum principle 10.The weak Harnack inequality 11.Boundary estimates Notes Exercises Chapter Ⅷ FIXED POINT THEOREMS AND THEIR APPLICATIONS Introduction 1.The Schauder fixed point theorem 2.Applications of the Schauder theorem 3.A theorem of Caristi and its applications Notes Exercises Chapter Ⅸ COMPARISON AND MAXIMUM PRINCIPLES Introduction I.Comparison principles 2.Maximum estimates 3.Comparison principles for divergence form operators 4.The maximum principle for divergence form operators Notes Exercises Chapter Ⅹ BOUNDARY GRADIENT ESTIMATES Introduction 1.The boundary gradient estimate in general domains 2.Convex-increasing domains 3.The spatial distance function 4.Curvature conditions 5.Nonexistence results 6.The case of one space dimension 7.Continuity estimates Notes Exercises Chapter Ⅺ GLOBAL AND LOCAL GRADIENT BOUNDS Introduction 1.Global gradient bounds for general equations 2.Examples 3.Local gradient bounds 4.The Sobolev theorem of Michael and Simon 5.Estimates for equations in divergence form 6.The case of one space dimension 7.A gradient bound for an intermediate situation Notes Exercises Chapter Ⅻ HOLDER GRADIENT ESTIMATES AND EXISTENCE THEOREMS Introduction 1.Interior estimates for equations in divergence form 2.Equations in one space dimension 3.Interior estimates for equations in general form 4.Boundary estimates 5.Improved results for nondivergence equations 6.Selected existence results Notes Exercises Chapter ⅩⅢ THE OBLIQUE DERIVATIVE PROBLEM FOR QUASILINEAR PARABOLIC EQUATIONS Introduction 1.Maximum estimates 2.Gradient estimates for the conormal problem 3.Gradient bounds for uniformly parabolic problems in general form 4.The H61der gradient estimate for the conormal problem 5.Nonlinear boundary conditions with linear equ |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。