内容推荐 本书系统论述了离散时间信号处理的基本理论和方法,是国际信号处理领域中的经典教材。内容包括离散时间信号与系统,z变换,连续时间信号采样,线性时不变系统的变换分析,离散时间系统结构,滤波器设计方法,离散傅里叶变换,离散傅里叶变换的计算,利用离散傅里叶变换的信号傅里叶分析,参数信号建模,离散希尔伯特变换,倒谱分析与同态解卷积。本书例题和习题丰富,具有实用价值。模,离散希尔伯特变换,倒谱分析和同态解卷积。本书例题和习题丰富,具有实用价值。已根据作者发布的勘误表(更新至2012年10月29日)对书中内容做了相应的修改。 本书适合从事数字信号处理工作的科技人员,高等学校相关专业的高年级学生、研究生及教师使用。 目录 1 Introduction 2 Discrete-Time Signals and Systems 2.0 Introduction 2.1 Discrete-Time Signals 2.2 Discrete-Time Systems 2.2.1 Memoryless Systems 2.2.2 Linear Systems 2.2.3 Time-Invariant Systems 2.2.4 Causality 2.2.5 Stability 2.3 LTI Systems 2.4 Properties of Linear Time-Invariant Systems 2.5 Linear Constant-Coefficient Difference Equations 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 2.6.1 Eigenfunctions for Linear Time-Invariant Systems 2.6.2 Suddenly Applied Complex Exponential Inputs 2.7 Representation of Sequences by Fourier Transforms 2.8 Symmetry Properties of the Fourier Transform 2.9 Fourier Transform Theorems 2.9.1 Linearity of the Fourier Transform 2.9.2 Time Shifting and Frequency Shifting Theorem 2.9.3 Time Reversal Theorem 2.9.4 Differentiation in Frequency Theorem 2.9.5 Parseval’s Theorem 2.9.6 The Convolution Theorem 2.9.7 The Modulation or Windowing Theorem 2.10 Discrete-Time Random Signals 2.11 Summary Problems 3 The z-Transform 3.0 Introduction 3.1 z-Transform 3.2 Properties of the ROC for the z-Transform 3.3 The Inverse z-Transform 3.3.1 Inspection Method 3.3.2 Partial Fraction Expansion 3.3.3 Power Series Expansion 3.4 z-Transform Properties 3.4.1 Linearity 3.4.2 Time Shifting 3.4.3 Multiplication by an Exponential Sequence 3.4.4 Differentiation of X(z) 3.4.5 Conjugation of a Complex Sequence 3.4.6 Time Reversal 3.4.7 Convolution of Sequences 3.4.8 Summary of Some z-Transform Properties 3.5 z-Transforms and LTI Systems 3.6 The Unilateral z-Transform 3.7 Summary Problems 4 Sampling of Continuous-Time Signals 4.0 Introduction 4.1 Periodic Sampling 4.2 Frequency-Domain Representation of Sampling 4.3 Reconstruction of a Bandlimited Signal from Its Samples 4.4 Discrete-Time Processing of Continuous-Time Signals 4.4.1 Discrete-Time LTI Processing of Continuous-Time Signals 4.4.2 Impulse Invariance 4.5 Continuous-Time Processing of Discrete-Time Signals 4.6 Changing the Sampling Rate Using Discrete-Time Processing 4.6.1 Sampling Rate Reduction by an Integer Factor 4.6.2 Increasing the Sampling Rate by an Integer Factor 4.6.3 Simple and Practical Interpolation Filters 4.6.4 Changing the Sampling Rate by a Noninteger Factor 4.7 Multirate Signal Processing 4.7.1 Interchange of Filtering with Compressor/Expander 4.7.2 Multistage Decimation and Interpolation 4.7.3 Polyphase Decompositions 4.7.4 Polyphase Implementation of Decimation Filters 4.7.5 Polyphase Implementation of Interpolation Filters 4.7.6 Multirate Filter Banks 4.8 Digital Processing of Analog Signals 4.8.1 Prefiltering to Avoid Aliasing 4.8.2 A/D Conversion 4.8.3 Analysis of Quantization Errors 4.8.4 D/A Conversion 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 4.9.1 Oversampled A/D Conversion with Direct Quantization 4.9.2 Oversampled A/D Conversion with Noise Shaping 4.9.3 Oversampling and Noise Shaping in D/A Conversion 4.10 Summary Problems 5 Transform Analysis of Linear Time-Invariant Systems 5.0 Introduction 5.1 The Frequency Response of LTI Systems 5.1.1 Frequency Response Phase and Group Delay 5.1.2 Illustration of Effects of Group Delay and Attenuation 5.2 System Functions—Linear Constant-Coefficient Difference Equations 5.2.1 Stability and Causality 5.2.2 Inverse Systems 5.2.3 Impulse Response for Rational System Functions 5.3 Frequency Response for Rational System Functions 5.3.1 Frequency Response of 1st-Order Systems 5.3.2 Examples with Multiple Poles and Zeros 5.4 Relationship between Magnitude and Phase 5.5 All-Pass Systems 5.6 |