内容推荐 詹姆斯·汉弗莱斯著的《BGG范畴O中半单Lie代数的表示(英文版)(精)》是第一本介绍极其重要的Kazhdan-Lusztig猜想(1979年)有关工作的书,该猜想是关于C上半单Lie代数g的最高权单模的特征标的。这个架构是由Bernstein-Gelfand-Gelfand(BGG)引进的模范畴O,它包括了g的所有最高权模,如Verma模和有限维单模。这个范畴的类比在表示论的许多领域中已颇具影响。 第I部分可用作自学或中级研究生课程一个学期的教材,附有大量的习题和例题。主要的预备知识是要求熟悉g的结构理论。书中讲述了范畴D中的基本技术,如BGG互反和Jantzen平移函子,最后以Kazhdan-Lusztig猜想证明的一个概述(归功于Beilinson-Bernstein和Brylinski-Kashiwara)结束。完整证明超出了本书范围,它需要深刻的几何方法:D-模和旗簇的反常层。 第II部分介绍了当前研究中重要的相关专题:抛物范畴D、射影函子、斜模、扭变和完备函子,以及Beilinson-Ginzburg-Soergel的Koszul对偶定理。 目录 Preface Chapter 0.Review of Semisimple Lie Algebras §0.1.Cartan Decomposition §0.2.Root Systems §0.3.Weyl Groups §0.4.Chevalley-Bruhat Ordering of W §0.5.Universal Enveloping Algebras §0.6.Integral Weights §0.7.Representations §0.8.Finite Dimensional Modules §0.9.Simple Modules for s(2,C) Part I.Highest Weight Modules Chapter 1.Category O:Basics §1.1.Axioms and Consequences §1.2.Highest Weight Modules §1.3.Verma Modules and Simple Modules §1.4.Maximal Vectors in Verma Modules §1.5.Example:s(2,C) §1.6.Finite Dimensional Modules §1.7.Action of the Center §1.8.Central Characters and Linked Weights §1.9.Harish-Chandra Homomorphism §1.10.Harish-Chandra's Theorem §1.11.Category O is Artinian §1.12.Subcategories OX §1.13.Blocks §1.14.Formal Characters of Finite Dimensional Modules §1.15.Formal Characters of Modules in O §1.16.Formal Characters of Verma Modules Notes Chapter 2. Characters of Finite Dimensional Modules §2.1.Summary of Prerequisites §2.2.F0rmal Characters Revisited §2.3.The Functions P and q §2.4.Formulas of Weyl and Kostant §2.5.Dimension Formula §2.6.Maximal Submodule of M(λ),入∈Λ+ §2.7.Related Topics Notes Chapter 3.Category O:Methods §3.1.Horn and Ext §3.2.Duality in O §3.3.Duals of Highest Weight Modules §3.4.The Reflection Group W[λ] §3.5.Dominant and Antidominant Weights §3.6.Tensoring Verma Modules with Finite Dimensional Modules §3.7.Standard Filtrations §3.8.Projectives in O §3.9.Indecomposable Projectives §3.10.Standard Filtrations of Projectives §3.11.BGG Reciprocity §3.12.Example:s(2,C) §3.13.Projective Generators and Finite Dimensional Algebras §3.14.Contravariant Forms §3.15.Universal Construction Notes Chapter 4.Highest Weight Modules I Chapter 5.Highest Weight Modules II Chapter 6.Extensions and resolutions Chapter 7.Translation Functors Chapter 8.Kazhdan-Lusztig Theory Part II.Further Developments Chapter 9.Parabolic Versions of Category O Chapter 10.Projective Functors and Principal Series Chapter 11.Tilting Modules Chapter 12.Twisting and Completion Functors Chapter 13.Complements Bibliography Frequently Used Symbols Index
|