![]()
内容推荐 本书通过较为全面和系统的文献综述,揭示出当前个性化推荐系统存在的主要问题在于高质量用户偏好数据的匮乏与种类多样的推荐算法之间的矛盾,实乃“巧妇难为无米之炊”。用户偏好乃个性化推荐系统之基,当前用户偏好获取存在两个方面的不足:一是基本数据分析来源的用户评分、评论和标签等标注行为发生频率非常低,容易产生数据稀疏问题;二是日志分析粒度太粗,毕竟日志分析以单页为基本单元而用户在特定网页并非均匀浏览而是不同部分有不同的侧重,从而无法具体得到用户更为精准的偏好信息。此外,对用户评论与评分不一致的现象进行了修正,意图使用更为真实客观的评分与评价信息向用户呈现推荐的原因;最后,以用户为中心,通过对用户与推荐系统交互行为的观察及用户即时、短期及长期偏好的充分利用,提出交互收敛式个性化推荐算法进行实时推荐,力图确保推荐精确性的前提下提高推荐的多样性,从而有效提升个性化推荐系统的可用性、易用性及用户满意度。 |