孙永生编著的《逼近与恢复的优化(孙永生文集)》这本论文选集是从作者在1958年至2002年间发表的论文中筛选出来的,其中有些论文是编者和编者的学生们合作的。它基本上展现了作者学习函数逼近论的历史轨迹。
一 可微函数类的逼近常数精确计算问题
周期可微函数用三角多项式的最佳逼近
用三角多项式紧迫周期可微函数
一对共轭周期函数的最佳逼近的渐进性质
关于Cesaro算子的逼近常数
关于周期函数用线性算子的平均逼近
二 B-核(广义Bernoulli核,CVD核)宽度精确计算问题
一个解析的周期函数类的L1宽度
一个广义样条函数类上的极值问题和有关的宽度问题
关于光滑函数类 上的单边逼近
关于广义Bernoulli核的n-宽度
带一个B核的周期卷积类的极子空间
三 Landau不等式的扩充及其某些应用
周期可微函数类上的某些极值定理
线性微分算子的Landau-Kolmogorov型不等式
一个光滑函数类上微分算子的最优回复
一个线性微分算子的Hardy-Littlewood-Polya不等式及有关优化问题
定义在实直线上的卷积类的极值问题
逼近论中Hardy-Littlewood-Polya不等式的广义版本及相关优化问题
四 全实轴上光滑函数类的逼近及其最优恢复
关于一个可微函数类的最优插值
可微函数类的最优恢复(二重取样)
可微函数类的最优恢复(多重取样)
R上的一个卷积函数类上的最优插值
全实轴上某些光滑函数类用告阶基样条的最佳逼近
W2(R)在L(R)中的最优回复
全实轴上某些光滑函数类用告阶基样条的最佳单边逼近
Sobolev-Wiener光滑函数类用二重取样的最优回复
定义在R上的某些光滑函数类在逼近论中的极值问题
五 带有Gauss侧度的B空间内点集的平均逼近问题及多元问题
关于Hibert空间内典集的平均宽度
带Gauss测度的一个Banach空间中最佳逼近的误差界
一个多元周期函数的Besov类的宽度估计
具有给定的混合型光滑模的多元周期函数的表现和逼近
附录:论文和著作目录
后记