网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 用S-Plus做金融数据统计分析
分类 经济金融-金融会计-金融
作者 (美)卡莫纳
出版社 世界图书出版公司
下载
简介
编辑推荐

这本《用S-Plus做金融数据统计分析》由美国Rene A. Carmona所著,内容是:The purpose of the course is to introduce the students to modem data analysiswith an emphasis on a domain of application that is of interest to most of them:financial engineering. The prerequisites for this course are minimal, however it isfair to say that all of the students have already taken a basic introductory statisticscourse. Thus the elementary notions of random variables, expectation and correlationare taken for granted, and earlier exposure to statistical inference (estimation, testsand confidence intervals) is assumed. It is also expected that the students are familiarwith a minimum of linear algebra as well as vector and matrix calculus.

目录

Part Ⅰ DATA EXPLORATION, ESTIMATION AND SIMULATION

 1  UNIVARIATE EXPLORATORY DATA ANALYSIS

1.1 Data, Random Variables and Their Distributions

 1.1.1 The PCS Data

 1.1.2 The S&P 500 Index and Financial Returns

 1.1.3 Random Variables and Their Distributions

 1.1.4 Examples of Probability Distribution Families

1.2 First Exploratory Data Analysis Tools

 1.2.1 Random Samples .

 1.2.2 Histograms

1.3 More Nonparametric Density Estimation

 1.3.1 Kernel Density Estimation

 1.3.2 Comparison with the Histogram

 1.3.3 S&P Daily Returns

 1.3.4 Importance of the Choice of the Bandwidth

1.4 Quantiles and Q-Q Plots

 1.4.1 Understanding the Meaning of Q-Q Plots

 1.4.2 Value at Risk and Expected Shortfall

1.5 Estimation from Empirical Data

 1.5.1 The Empirical Distribution Function

 1.5.2 Order Statistics

1.5.3 Empirical Q-Q Plots

1.6 Random Generators and Monte Carlo Samples

1.7 Extremes and Heavy Tail Distributions

1.7.1 S&P Daily Returns, Once More

1.7.2 The Example of the PCS Index

1.7.3 The Example of the Weekly S&P Returns

Problems

Notes & Complements

 2  MULTIVARIATE DATA EXPLORATION

2.1 Multivariate Data and First Measure of Dependence

 2.1.1 Density Estimation

 2.1.2 The Correlation Coefficient

2.2 The Multivariate Normal Distribution

 2.2.1 Simulation of Random Samples

 2.2.2 The Bivariate Case

 2.2.3 A Simulation Example

 2.2.4 Let's Have Some Coffee

 2.2.5 Is the Joint Distribution Normal?

2.3 Marginals and More Measures of Dependence

 2.3.1 Estimation of the Coffee Log-Return Distributions

 2.3.2 More Measures of Dependence

2.4 Copulas and Random Simulations

 2.4.1 Copulas

 2.4.2 First Examples of Copula Families

 2.4.3 Copulas and General Bivariate Distributions

 2.4.4 Fitting Copulas

 2.4.5 Monte Carlo Simulations with Copulas

 2.4.6 A Risk Management Example

2.5 Principal Component Analysis

 2.5.1 Identification of the Principal Components of a Data Set

 2.5.2 PCA with S-Plus

 2.5.3 Effective Dimension of the Space of Yield Curves

 2.5.4 Swap Rate Curves

Appendix 1: Calculus with Random Vectors and Matrices

Appendix 2: Families of Copulas

Problems

Notes & Complements

Part Ⅱ REGRESSION

 3  PARAMETRIC REGRESSION

3.1 Simple Linear Regression

 3.1.1 Getting the Data

 3.1.2 First Plots

 3.1.3 Regression Set-up

 3.1.4 Simple Linear Regression

 3.1.5 Cost Minimizations

 3.1.6 Regression as a Minimization Problem

3.2 Regression for Prediction & Sensitivities

 3.2.1 Prediction

 3.2.2 Introductory Discussion of Sensitivity and Robustness

 3.2.3 Comparing L2 and L1 Regressions

 3.2.4 Taking Another Look at the Coffee Data

3.3 Smoothing versus Distribution Theory

 3.3.1 Regression and Conditional Expectation

 3.3.2 Maximum Likelihood Approach

3.4 Multiple Regression

 3.4.1 Notation

 3.4.2 The S-Plus Function lm

 3.4.3 R2 as a Regression Diagnostic

3.5 Matrix Formulation and Linear Models

 3.5.1 Linear Models

 3.5.2 Least Squares (Linear) Regression Revisited

 3.5.3 First Extensions

 3.5.4 Testing the CAPM

3.6 Polynomial Regression

 3.6.1 Polynomial Regression as a Linear Model

 3.6.2 Example of S- plus Commands

 3.6.3 Important Remark

 3.6.4 Prediction with Polynomial Regression

 3.6.5 Choice of the Degree p

3.7 Nonlinear Regression

3.8 Term Structure of Interest Rates: A Crash Course

3.9 Parametric Yield Curve Estimation

 3.9.1 Estimation Procedures

 3.9.2 Practical Implementation

 3.9.3 S- Plus Experiments

 3.9.4 Concluding Remarks

Appendix: Cautionary Notes on Some S-Plus Idiosyncracies

Problems

Notes & Complements

 4  LOCAL & NON-PARAMETRIC REGRESSION

4.1 Review of the Regression Setup

4.2 Natural Splines as Local Smoothers

4.3 Nonparametric Scatterplot Smoothers

 4.3.1 Smoothing Splines

 4.3.2 Locally Weighted Regression

 4.3.3 A Robust Smoother

 4.3.4 The Super Smoother

 4.3.5 The Kernel Smoother

4.4 More Yield Curve Estimation

 4.4.1 A FirstEstimation Method

 4.4.2 A Direct Application of Smoothing Splines

 4.4.3 US and Japanese Instantaneous Forward Rates

4.5 Multivariate Kernel Regression

 4.5.1 Running the Kernel in S-Plus

 4.5.2 An Example Involving the June 1998 S&P Futures Contract

4.6 Projection Pursuit Regression

 4.6.1 The S- Plus Function ppreg

 4.6.2 ppreg Prediction of the S&P Indicators

4.7 Nonparametric Option Pricing

 4.7.1 Generalities on Option Pricing

 4.7.2 Nonparametric Pricing Alternatives

 4.7.3 Description of the Data

 4.7.4 The Actual Experiment

 4.7.5 Numerical Results

Appendix: Kernel Density Estimation & Kernel Regression

Problems

Notes & Complements

Part Ⅲ TIME SERIES & STATE SPACE MODELS

 5  TIME SERIES MODELS: AR, MA, ARMA, & ALL THAT

5.1 Notation and First Definitions

 5.1.1 Notation

 5.1.2 Regular Time Series and Signals

 5.1.3 Calendar and Irregular Time Series

 5.1.4 Example of Daily S&P 500 Futures Contracts

5.2 High Frequency Data

 5.2.1 TimeDage Manipulations

5.3 Time Dependent Statistics and Stationarity

 5.3.1 Statistical Moments

 5.3.2 The Notion of Stationarity

 5.3.3 The Search for Stationarity

 5.3.4 The Example of the CO2 Concentrations

5.4 First Examples of Models

 5.4.1 White Noise

 5.4.2 Random Walk

 5.4.3 Auto Regressive Time Series

 5.4.4 Moving Average Time Series

 5.4.5 Using the Backward Shift Operator B

 5.4.6 Linear Processes

 5.4.7 Causality, Stationarity and Invertibility

 5.4.8 ARMA Time Series

 5.4.9 ARIMA Models

5.5 Fitting Models to Data

 5.5.1 Practical Steps

 5.5.2 S- Plus Implementation

5.6 Putting a Price on Temperature

 5.6.1 Generalities on Degree Days

 5.6.2 Temperature Options

 5.6.3 Statistical Analysis of Temperature Historical Data

Appendix: More S-Plus Idiosyncracies

Problems

Notes & Complements

 6  MULTIVARIATE TIME SERIES, LINEAR SYSTEMS & KALMAN FILTERING

6.1 Multivariate Time Series

 6.1.1 Stationarity and Auto-Covariance Functions

 6.1.2 Multivariate White Noise

 6.1.3 Multivariate AR Models

 6.1.4 Back to Temperature Options

 6.1.5 Multivariate MA & ARIMA Models

 6.1.6 Cointegration

6.2 State Space Models

6.3 Factor Models as Hidden Markov Processes

6.4 Kalman Filtering of Linear Systems

 6.4.1 One-Step-Ahead Prediction

 6.4.2 Derivation of the Recursive Filtering Equations

 6.4.3 Writing an S Function for Kalman Prediction

 6.4.4 Filtering

 6.4.5 More Predictions

 6.4.6 Estimation of the Parameters

6.5 Applications to Linear Models

 6.5.1 State Space Representation of Linear Models

 6.5.2 Linear Models with Time Varying Coefficients

 6.5.3 CAPM with Time Varying β's

6.6 State Space Representation of Time Series

 6.6.1 The Case of AR Series

 6.6.2 The General Case of ARMA Series

 6.6.3 Fitting ARMA Models by Maximum Likelihood

6.7 Example: Prediction of Quarterly Earnings

Problems

Notes & Complements

 7  NONLINEAR TIME SERIES: MODELS AND SIMULATION.

7.1 First Nonlinear Time Series Models

 7.1.1 Fractional Time Series

 7.1.2 Nonlinear Auto-Regressive Series

 7.1.3 Statistical Estimation

7.2 More Nonlinear Models: ARCH, GARCH & All That

 7.2.1 Motivation

 7.2.2 ARCH Models

 7.2.3 GARCH Models

 7.2.4 S- Plus Commands

 7.2.5 Fitting a GARCH Model to Real Data

 7.2.6 Generalizations

7.3 Stochastic Volatility Models

7.4 Discretization of Stochastic Differential Equations

 7.4.1 Discretization Schemes

 7.4.2 Monte Carlo Simulations: A First Example

7.5 Random Simulation and Scenario Generation

 7.5.1 A Simple Model for the S&P 500 Index

 7.5.2 Modeling the Short Interest Rate

 7.5.3 Modeling the Spread .

 7.5.4 Putting Everything Together

7.6 Filtering of Nonlinear Systems

 7.6.1 Hidden Markov Models

 7.6.2 General Filtering Approach

 7.6.3 Particle Filter Approximations

 7.6.4 Filtering in Finance? Statistical Issues

 7.6.5 Application: Tracking Volatility

Appendix: Preparing Index Data

Problems

Notes & Complements

APPENDIX: AN INTRODUCTION TO S AND S-Plus

References

Notation Index

Data Set Index

S-Plus Index

Author Index

Subject Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/8 3:16:19