网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 先进纳米薄膜材料--制备方法及应用(英文版)(精)/先进功能材料丛书
分类
作者
出版社 化学工业出版社
下载
简介
编辑推荐

纳米薄膜材料在国际上近10年来一直是科学研究的热门领域,由林媛和陈新共同主编的《先进纳米薄膜材料--制备方法及应用(英文版)(精)/先进功能材料丛书》一书覆盖各种纳米薄膜材料的制备技术,重点阐明生长机制以及生长条件与纳米薄膜材料性能之间的关联性,并介绍相关的制备技术在纳米薄膜材料和纳米器件中的应用实例。

除了传统的制备技术如溶胶-凝胶法、电子束沉积等,还包含很多近10多年来新兴的纳米薄膜制备技术如高分子辅助沉积法、3D打印等国内外在该领域的新进展。

本书注重基本概念和应用实例并重,充分考虑不同层次读者的需求。在每个章节先介绍一种制备技术或器件应用的基本概念和工作原理,这会有利于本科生之类初级程度的读者,之后会介绍具有一定深度的纳米薄膜结构形成机制及器件应用实例,这将吸引有一定科研经验的高级读者。

本书会使读者在读了本书之后对本领域能具备一个比较广阔的视野,将从本书中学到物理知识应用到其他领域中去。

内容推荐

由林媛和陈新共同主编的《先进纳米薄膜材料--制备方法及应用(英文版)(精)/先进功能材料丛书》一书总结了纳米薄膜材料的国内外研究最新进展,既详细地介绍了纳米薄膜材料的制备方法,又介绍了它们在电子器件领域的应用。系统阐述了薄膜及纳米结构的一系列制备技术,不仅包括溶胶凝胶法、MOCVD、电子束沉积、磁控溅射等传统技术,还包括近年来新发展起来的高分子辅助沉积法、3D打印、液相-电子束诱导沉积等技术。此外,本书还对纳米薄膜及其它纳米结构的一些典型应用做了介绍,并给出实例,包括磁性薄膜的应用、氧化物薄膜在燃料电池领域的应用、相变材料在存储器领域的应用和柔性薄膜器件等。

本书适合材料、微电子等相关专业的研究生、科技人员和教学人员使用。

目录

List of Contributors ⅫⅠ

1 Pulsed Laser Deposition for Complex Oxide Thin Film and Nanostructure

Chunrui Ma and Chonglin Chen

 1.1 Introduction

 1.2 Pulsed Laser Deposition System Setup

 1.3 Advantages and Disadvantages of Pulsed Laser Deposition

 1.4 TheThermodynamics and Kinetics of Pulsed Laser Deposition

1.4.1 Laser–Material Interactions

1.4.2 Dynamics of the Plasma

1.4.3 Nucleation and Growth of the Film on the Substrate Surface

 1.5 Monitoring of Growth Kinetics

1.5.1 Introduction and RHEED Studies

1.5.2 Growth Kinetics Studies by Surface X-ray Diffraction

 1.6 Fundamental Parameters in Thin Film Growth

1.6.1 Substrate Temperature

1.6.2 Background Gas Pressure

1.6.3 Laser Fluence and Ablation Area

1.6.4 Target–Substrate Distance

1.6.5 Post-Annealing

1.6.6 Lattice Misfit

 1.7 Pulsed Laser Deposition for Complex Oxide Thin Film Growth

1.7.1 Pulsed Laser Deposition for SuperconductorThin Film

1.7.2 Pulsed Laser Deposition for Ferroelectric Thin Films

1.7.3 Pulsed Laser Deposition for Ferromagnetic Thin Film

1.7.4 Pulsed Laser Deposition for Multiferroics Thin Film

1.7.5 Interface Strain Engineering the Complex Oxide Thin Film

1.7.5.1 Thickness Effect

1.7.5.2 Substrate Effect

1.7.5.3 Post-Annealing

 1.8 Pulsed Laser Deposition for Nanostructure Growth

1.8.1 Self-Assembled Nanoscale Structures

1.8.2 Geometrically Ordered Arrays

 1.9 Variation of Pulsed Laser Deposition

 1.10 Conclusion

 References

2 Electron Beam Evaporation Deposition

ZhongpingWang and Zengming Zhang

 2.1 Introduction

 2.2 Electron Beam Evaporation System

2.2.1 Heating Principle and Characters of Electron Beams

 2.2.1.1 Heating Principle of Electron Beams

 2.2.1.2 Characters of Electron Beams

2.2.2 Equipments of Electron Beam Source

 2.2.2.1 Filament and Electron Emission

 2.2.2.2 Electron Beam Control

 2.2.2.3 Power Supply, Crucibles, and Feed Systems

 2.2.2.4 Source Materials

2.2.3 Application of Electron Beam Evaporation

 2.2.3.1 Cooling of Electron Beam Gun

 2.2.3.2 Evaporation of Source Materials by Electron Beam

 2.2.3.3 Vacuum Deposition Process of Electron Beam Evaporation

 2.2.3.4 Attention andWarning for Electron Beam Evaporation

 2.3 Characterization of Thin Film

2.3.1 Surface Morphology by AFM

2.3.2 Thickness Measurement by Spectroscopic Ellipsometry

 2.4 Summary

 Acknowledgments

 References

3 Nanostructures and Thin Films Deposited with Sputtering

Weiqing Yang

 3.1 Introduction

 3.2 Nanostructures with Sputtering

3.2.1 Oxide Nanostructures

 3.2.1.1 Needle-Shaped MoO3 Nanowires

 3.2.1.2 Bi2O3 Nanowires

3.2.2 Nitride Nanostructures

 3.2.2.1 Graphitic-C3N4 Nanocone Array

 3.2.2.2 InAlN Nanorods

 3.3 Thin Films Deposited with Sputtering

3.3.1 Metal AlloyThin Films

 3.3.1.1 LaNi5 AlloyThin Films

 3.3.1.2 Ni–Mn–In AlloyThin Films

3.3.2 Composite Metal Oxide Thin Films

 3.3.2.1 BiFeO3/BaTiO3 BilayerThin Films

 3.4 Summary

 Acknowledgments

 References

4 Nanostructures and Quantum Dots Development with Molecular Beam Epitaxy

Wen Huang

 4.1 Introduction

 4.2 Technology of MBE

4.2.1 The Physics of MBE

4.2.2 MBE Growth Mechanisms

 4.2.2.1 Two-Dimensional (2D) MBE Growth Mechanism

 4.2.2.2 Three-Dimensional (3D) MBE Growth Mechanism

 4.2.2.3 Stranskie–Krastanow 3D Growth Mechanism

 4.3 Nanoheterostructures Fabricated by Molecular Beam Epitaxy

4.3.1 Semiconducting Oxide Heterostructures Grown by Laser Molecular Beam Epitaxy

4.3.2 Strain-Induced Magnetic Anisotropy in Highly Epitaxial Heterostructure by LMBE

 4.4 Quantum Dots Development with Molecular Beam Epitaxy

 4.5 Summary

 Acknowledgments

 References

5 Carbon Nanomaterials and 2D Layered Materials Development with Chemical Vapor Deposition

Taisong Pan

 5.1 Introduction

 5.2 Carbon Nanotube Synthesis by Chemical Vapor Deposition

5.2.1 Overview of CVD Process of Carbon Nanotube Growth

5.2.2 Control of Carbon Nanotube Structure

5.2.3 The Alignment of Carbon Nanotube Array

 5.3 Graphene Synthesis by Chemical Vapor Deposition

5.3.1 Overview of CVD Process of Graphene Synthesis

5.3.2 Control of Graphene Quality

 5.4 Metal Dichalcogenide Synthesis by Chemical Vapor Deposition

5.4.1 Overview of CVD Process of Metal Dichalcogenides

5.4.2 Growth Control of Metal Dichalcogenides in Chemical Vapor Deposition

 5.5 Summary

 References

6 Nanostructures Development with Atomic Layer Deposition

Hulin Zhang

 6.1 Introduction

 6.2 Reaction Mechanisms

6.2.1 Thermal ALD

6.2.2 Catalytic ALD

6.2.3 Metal ALD

 6.3 Nanostructures Based on ALD

6.3.1 Nanolaminates and Nanofilms

6.3.2 Nanostructures as Templates

6.3.3 Nanostructured Modification

 6.4 Summary

 Acknowledgments

 References

7 Nanomaterial Development with Liquid-Phase Epitaxy

Weiqing Yang

 7.1 Introduction

 7.2 Hydrothermal Method

7.2.1 Development of Hydrothermal Method

7.2.2 Microwave-Assisted Hydrothermal Method

 7.2.2.1 Microwave-Assisted Preparation of Nanostructures in Aqueous Solution

 7.3 Nanostructures Fabricated Using LPE

7.3.1 Core–Shell Structures

7.3.2 The Epitaxial Preparation Methods of Core–Shell Structures

 7.3.2.1 General Nanochemical Approaches to Prepare Epitaxial Core–Shell UCNPs with a Single Shell Layer

 7.3.2.2 Layer-by-Layer Approach to Prepare Core–Multishell UCNPs with MonolayerThickness Precision

 7.3.2.3 Mesoporous Silica Coating

 7.3.2.4 Coupling of UCNPs with Plasmonics Using Core–Shell Architecture

 7.4 Summary

 Acknowledgments

 References

8 Nanostructural Thin Film Development with Chemical Solution Deposition

Yanda Ji and Yuan Lin

 8.1 Introduction

 8.2 Precursor Solution Preparation

8.2.1 Chemical Strategies for Precursor Solutions

8.2.2 Sol–Gel Method

8.2.3 Metal-Organic Deposition

8.2.4 Polymer-Assisted Deposition

 8.3 Coating

 8.4 Thermal Treatment

 8.5 Control of the Microstructures in Thin Films Prepared by CSD Techniques

8.5.1 Thermodynamics for CSD-Delivered Thin Films

8.5.2 EpitaxialThin Film Growth

 8.6 Examples of NanostructuralThin Films Prepared by CSD Techniques

8.6.1 Sol–Gel-Delivered Nanostructured Materials

8.6.2 MOD of Nanostructured Materials

8.6.3 PAD-Delivered Nanostructured Materials

 8.7 Summary

 References

9 Nanomaterial Development Using In Situ Liquid Cell Transmission Electron Microscopy

Xin Chen,Wangfan Zhou, Debiao Xie, and Hongliang Cao

 9.1 Introduction

 9.2 The Technological Development of In Situ Liquid Cell TEM

9.2.1 The Advent of the Modern In Situ Liquid Cell

9.2.2 Recent Technological Development of Liquid Cells

9.2.3 Commercial Liquid Cells

 9.3 Nanomaterial Development Using In Situ Liquid Cell TEM Technology

9.3.1 Nanomaterial Growth Induced by Electrical Bias

9.3.2 Nanomaterial Growth Induced by Irradiation

9.3.3 Nanomaterial Formation Induced by Heating

9.3.4 Further Nanomaterial Development Results from In Situ Liquid Cell TEM

 9.4 Summary and Outlook

 Acknowledgments

 References

10 Direct-Writing Nanolithography

Min Gao

 10.1 Introduction

 10.2 Electron Beam Lithography

 10.3 Focused Ion Beam Lithography

 10.4 Gas-Assisted Electron and Ion Beam Lithography

 10.5 SPM Lithography

 10.6 Dip-Pen Lithography

 10.7 Summary

 Acknowledgments

 References

11 3D Printing of Nanostructures

Min Gao

 11.1 Introduction

 11.2 3D Printing Processes

 11.3 Types of 3D Printing

11.3.1 Stereolithography

11.3.2 Fused Deposition Modeling

11.3.3 Selective Deposition Lamination

11.3.4 Selective Laser Sintering

11.3.5 3D Inkjet Printing

11.3.6 Multijet Modeling

 11.4 3D Direct LaserWriting by Multiphoton Polymerization

 11.5 3D Printing Applications

11.5.1 Medical Applications

11.5.2 Industrial Manufacturing

11.5.3 Daily Consumption

11.5.4 Limitation of 3D Printing Applications

 11.6 Summary

 Acknowledgments

 References

12 Nanostructured Thin Film Solid Oxide Fuel Cells

Alex Ignatiev, Rabi Ebrahim, Mukhtar Yeleuov, Daniel Fisher, Xin Chen,NaijuanWu, and Serekbol Tokmoldin

 12.1 Introduction

 12.2 Solid Oxide Fuel Cells

12.2.1 Thin Film Solid Oxide Fuel Cell Fabrication

12.2.2 Thin Film Solid Oxide Fuel Cell Testing

12.2.3 Thin Film Fuel Cell Stack Development and Testing

 12.3 Summary

 Acknowledgments

 References

13 Nanostructured Magnetic Thin Films and Coatings

Goran Rasic

 13.1 Introduction

 13.2 High-Frequency Devices

13.2.1 Ferromagnets

13.2.2 Coercivity

13.2.3 Magnetic Losses

13.2.4 Nanoscale Methods of Loss Reduction

13.2.5 Manufacturing Considerations

13.2.6 Coercivity Reduction in Surface-Patterned Magnetic Thin Films

 13.3 Magnetic Information Storage Devices

13.3.1 Superparamagnetic Limit

13.3.2 Signal-to-Noise Ratio

13.3.3 Present-Day Solutions

13.3.4 Bit Patterned Media

13.3.5 Manufacturing Considerations

13.3.6 Patterned Media for Magnetic Data Storage

 13.4 Summary

 Acknowledgments

 References

14 Phase Change Materials for Memory Application

LiangcaiWu and Zhitang Song

 14.1 Introduction

 14.2 Ge2Sb2Te5 and Its Properties’ Improvement

14.2.1 Ge2Sb2Te5 Phase Change Material

14.2.2 N-Doped Ge2Sb2Te5 Material

14.2.3 C-Doped Ge2Sb2Te5 Material

 14.2.3.1 Film Properties and Microstructure Characteristics

 14.2.3.2 Reversible Phase Change Characteristics of C-Doped Ge2Sb2Te5

 14.3 High-Speed and Lower-Power TiSbTe Materials

14.3.1 Film Properties and Microstructure Characteristics

 14.3.1.1 Ti-Doped Sb2Te Materials

 14.3.1.2 Ti-Doped Sb2Te3 Materials

14.3.2 Reversible Phase Change Characteristics of TST Alloy

 14.4 Summary

 Acknowledgments

 References

15 Nanomaterials and Devices on Flexible Substrates

Hulin Zhang

 15.1 Introduction

 15.2 Nanomaterials on Flexible Substrates

15.2.1 Nanomaterials Synthesized Directly on Flexible Substrates

15.2.2 Nanomaterials Transferred on Flexible Substrates

 15.3 Devices on Flexible Substrates

15.3.1 Printing Electronics on Flexible Substrates

15.3.2 Biointegrated Electronics on Flexible Substrates

 15.4 Summary

 Acknowledgments

 References

Index

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/8 19:15:26