定光桂教授的这本《泛函分析新讲》是一部有鲜明特色的泛函分析专著兼教材,和传统的泛函分析著作以赋范空间为主线不同,该书把赋范空间、赋准范空间和赋拟范空间结合起来进行深入的讨论,特别是列举了许多反例说明它们之间的差异点。全书分共为两部分,第一部分的主要内容可以作为泛函分析的入门教材,第二部分则介绍了Hilbert空间的基本内容。
该书可作为大学高年级本科生和研究生的教材或教学参考书。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 泛函分析新讲/大学数学科学丛书 |
分类 | 科学技术-自然科学-数学 |
作者 | 定光桂 |
出版社 | 科学出版社 |
下载 | ![]() |
简介 | 编辑推荐 定光桂教授的这本《泛函分析新讲》是一部有鲜明特色的泛函分析专著兼教材,和传统的泛函分析著作以赋范空间为主线不同,该书把赋范空间、赋准范空间和赋拟范空间结合起来进行深入的讨论,特别是列举了许多反例说明它们之间的差异点。全书分共为两部分,第一部分的主要内容可以作为泛函分析的入门教材,第二部分则介绍了Hilbert空间的基本内容。 该书可作为大学高年级本科生和研究生的教材或教学参考书。 内容推荐 本书是具有鲜明特点的专著兼教材,其创新之处是把赋范空间、赋准范空间和赋拟范空间结合起来深入讨论(特别是创造出了许多有趣的反例说明它们的差异点),这样的做法不仅是理论上、并且也是实际问题的需要。 本书共有两部分,第一部分的主要内容可以作为泛函分析的入门教材,我们在前两章介绍和讨论了赋范、赋准范和赋拟范空间及其上的线性算子的基本概念,第三章介绍和讨论了所谓“线性泛函的三大原理”,即Hahn—Banach定理、开映像与闭图像定理以及共鸣定理(一致有界原理),最后介绍了Hilbert空间的基本内容。 本书的第二部分以及第一部分全部(特别是一些*号部分和附录)则可作为高校的相关研究生教材,在第二部分中,除了介绍著名的可分空间(改范)等价于C[a,b]以及严格凸空间外,还介绍和讨论了(作为上述空间推广的)拓扑向量空间的基本而有用的一些概念和特性。 本书既可作为泛函分析(本科生和研究生)的教材,也可作为需要此专门知识的读者的一本参考书,本书含有较多的例、反例和注记,并在每章后均附有习题(并在最后附有提示),且在最后附有参考材料,对于自学者以及启发和培养创造思维也是很有利的。 目录 《大学数学科学丛书》序 序 前言 第一部分 第一章 赋范空间、赋准范空间和赋拟范空间 1.1 赋(准、拟)范线性空间的定义以及基本特性 1.2 赋范空间的例子 1.3 (非赋范的)赋准范空间的例子 1.4 (非赋范的)赋拟范空间的例子 1.5 赋范线性空间为有限维的特征 1.6 赋拟范空间的一些特征 1.7 赋准范空间的一些特征 1.8 赋(准)范空间的完备性及例子 1.9 空间完备的一些特性 1.9 附录*用第二纲集方法证明准范数乘的连续性 1.10 赋(准)范空间的可分性 1.11 赋(准)范空间的可数基(schauder基) 1.12 商空间与积空间 1.12.1 商空间 1.12.2 积空间 1.13 赋(准)范空间的等价与完备化 1.13.1 赋(准)范空间的等价 1.13.2 赋(准)范空间的完备化 习题一 第二章 赋(准、拟)范空间上的线性算子 2.1 算子的定义及基本性质 2.1 附录*赋准范、拟范空间中线性而不连续泛函的存在性 2.2 连续(有界)线性算子空间与全连续(紧)算子 2.3 共轭空间与自反空间的概念 2.4 共轭空间的例子 2.5 自反与非自反空间的例子 习题二 第三章 Hahn-Banach型定理 3.1 线性泛函的控保延拓定理 3.2 (非零)连续线性泛函的存在定理(含隔离性定理) 3.2 附录定理1的几何意义 3.3 元列的弱收敛与强收敛 3.4 严格凸空间与一致凸空间 3.5 赋范空间中连续线性泛函延拓的唯一性 3.6 自反空间的一些特性 3.7 Hahn—Banach定理的一些应用 3.7.1 最佳逼近的存在性 3.7.2 矩量问题 3.7.3 Banach极限 3.7 附录凸分析初步 习题三 第四章 开映像与闭图像定理 4.1 线性开算子与闭算子 4.2 开映像定理与闭图像定理 4.3 闭图像定理与开映像定理的应用 习题四 第五章 共鸣定理(一致有界原理) 5.1 完备及第二纲赋β*范空间(O<β*≤1)中的共鸣定理 5.2 广义拟次加泛函族的共鸣定理 5.3 T与T16之逆的关系(值域定理) 5.4 共鸣定理的一些应用 习题五 第六章 Hilbert空间 6.1 Hilbert空间的定义及例子 6.1 附录赋范空间可以定义(等价)内积的特征 6.2 正交性 6.3 Hilbert空间上的算子 6.4 线性算子的谱 习题六 第二部分 第七章 可分Banach空间可赋严格凸范数 7.1 空间■的万有性 7.2 可分Banach空间均有等价的严格凸范数 第八章 拓扑线性空间上的线性算子 8.1 拓扑线性空间的基本概念 8.2 拓扑线性空间上线性泛函的连续性 8.3 线性算子的有界性和连续性 第九章 弱拓扑■与弱“拓扑■” 9.1 弱拓扑的一些性质 9.2 弱*拓扑的一些性质 9.3 赋范空间的弱完备与弱列备性 9.4 Krein-Milman定理 9.4 附录*Choquet定理 9.5 Whitley结构定理 9.6 赋范空间中弱紧与弱自列紧的等价性 9.7 用基序列的方法证明在Banach空间中的Eberlein-Smulian定理 习题九 习题提示 参考文献 索引 《大学数学科学丛书》已出版书目 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。