![]()
内容推荐 \t随着高性能计算的飞速发展与模型机理研究的不断深入,计算机仿真模型呈现结构复杂、高维、高度非线性的特点,同时仿真模型的运行时间也大幅增加,对复杂仿真模型的建模与分析提出了新的挑战。本书针对复杂模型计算耗时长、高维非线性等问题,以代理模型为技术途径进行实验设计、灵敏度分析、优化设计等方面的研究,并以船舶操纵性为建模对象进行应用。
\t本书可作为研究复杂系统建模与仿真的参考用书。
目录 Chapter 1 Introduction 1.1 Surrogate Model 1.2 Design of Experiments 1.3 Global Sensitivity Analysis 1.4 Book Overview Chapter 2 Optimal Latin Hypercube Design Using Local Search-based Genetic Algorithm 2.1 Optimal Latin Hypercube Design 2.2 Local Search-based Genetic Algorithm for LHD Optimization 2.3 Performance Comparison of Optimization Methods 2.4 Summary Chapter 3 Active Learning of Multi-kernel Kriging Surrogate Models Using Regional Discrepancy and Space-filling Criteria 3.1 Formulation of Ensemble Surrogate Model 3.2 Ensemble Learning for Kriging Surrogate Models 3.3 Experimental Study 3.4 Summary …… |