网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 神经网络的统计力学(英文版)(精)/人工智能科学与技术丛书 |
分类 | |
作者 | 黄海平 |
出版社 | 高等教育出版社 |
下载 | |
简介 | 内容推荐 本书涵盖了用于理解神经网络原理的必要统计力学知识,包括复本方法、空腔方法、平均场近似、变分法、随机能量模型、Nishimori条件、动力学平均场理论、对称性破缺、随机矩阵理论等,同时详细描述了监督学习、无监督学习、联想记忆网络、感知器网络、随机循环网络等神经网络及其功能的物理模型以及解析理论,通过简洁的模型展示了神经网络原理的数学美和物理深度,介绍了相关历史并展望了未来研究的重要课题,可供对神经网络原理感兴趣的学生、研究人员以及工程师参考使用。 作者简介 黄海平,中山大学物理学院教授,博士生导师。本科毕业于中山大学理工学院,博士毕业于中国科学院理论物理研究所,随后在香港科技大学物理系、东京工业大学计算智能系以及日本理化学研究所脑科学中心从事统计物理与机器学习、神经计算交叉的基础理论研究,2017年因在无监督学习方面的研究获得RIKEN杰出研究奖。2018年入选中山大学百人计划,目前的研究兴趣包括感知学习的孤立解空间证明、无监督学习的对称性破缺本质、深度网络的维度下降和系综学习等方向。曾主持国家自然科学基金青年基金、优秀青年基金等国家级项目。 目录 1 Introduction References 2 Spin Glass Models and Cavity Method 2.1 Multi-spin Interaction Models 2.2 Cavity Method 2.3 From Cavity Method to Message Passing Algorithms References 3 Variational Mean-Field Theory and Belief Propagation 3.1 Variational Method 3.2 Variational Free Energy 3.2.1 Mean-Field Approximation 3.2.2 Bethe Approximation 3.2.3 From the Bethe to Naive Mean-Field Approximation 3.3 Mean-Field Inverse Ising Problem References 4 Monte Carlo Simulation Methods 4.1 Monte Carlo Method 4.2 Importance Sampling 4.3 Markov Chain Sampling 4.4 Monte Carlo Simulations in Statistical Physics 4.4.1 Metropolis Algorithm 4.4.2 Parallel Tempering Monte Carlo References 5 High-Temperature Expansion 5.1 Statistical Physics Seting 5.2 High-Temperature Expansion 5.3 Properties of the TAP Equation References 6 Nishimori Line 6.1 Model Setting 6.2 Exact Result for Internal Energy 6.3 Proof of No RSB Effects on the Nishimori Line References 7 Random Energy Model 7.1 Model Setting 7.2 Phase Diagram References 8 Statistical Mechanical Theory of Hopfield Model 8.1 Hopfield Model 8.2 Replica Method 8.2.1 Replica-Symmetric Ansatz 8.2.2 Zero-Temperature Limit 8.3 Phase Diagram 8.4 Hopfield Model with Arbitrary Hebbian Length 8.4.1 Computation of the Disorder-Averaged Free Energy 8.4.2 Derivation of Saddle-Point Equations 8.4.3 Computation Transformation to Solve the SDE 8.4.4 Zero-Te mperature Limit References 9 Replica Symmetry and Replica Symmetry Breaking 9.1 Generalized Free Energy and Complexity of States 9.2 Applications to Constraint Satisfaction Problems 9.3 More Steps of Replica Symmetry Breaking References 10 Statistical Mechanics of Restricted Boltzmann Machine 10.1 Boltzmann Machine 10.2 Restricted Boltzmann Machine 10.3 Free Energy Calculation 10.4 Thermodynamic Quantities Related to Learning 10.5 Stability Analysis 10.6 Variational Mean-Field Theory for Training Binary RB Ms 10.6.1 RBMs with Binary Weights 10.6.2 Variational Principle 10.6.3 Experiments References 11 Simplest Model of Unsupervised Learning with Binary Synapses 11.1 Model Setting 11.2 Derivation of sMP and AMP Equations 11.3 Replica Computation 11.3.1 Explicit form of 11.4 Phase Transitions 11.5 Measuring the Temperature of Dataset References 12 Inherent-Symmetry Breaking in Unsupervised Learning 12.1 Model Setting 12.1.1 Cavity Approximation 12.1.2 Replica Computation 12.1.3 Stability Analysis 12.2 Phase Diagram 12.3 Hyper-Parameters Inference References 13 Mean-Field Theory of Ising Perceptron 13.1 Ising Perceptron model 13.2 Message-Passing-Based Learning 13.3 Replica Analysis 13.3.1 Replica Symmetry 13.3.2 Replica Symmetry Breaking 13.4 Further Theory Development References 14 Mean-Field Model of Multi-layered Perceptron 14.1 Random Active Path Model 14.1.1 Results from Cavity Method 14.1.2 An Infinite Depth Analysis 14.2 Mean-Field Training Algorithms 14.3 Spike and Slab Model 14.3.1 Ensemble Perspective 14.3.2 Training Equations References 15 Mean-Field Theory of Dimension Reduction 15.1 Mean-Field Model 15.2 Linear Dimensionality and Correlation Strength 15.2.1 Iteration Equations for Correlation Strength 15.2.2 Mechanism of Dimension Reduction 15.3 Dimension Reduction with Correlated Synapses 15.3.1 Model Setting 15.3.2 Mean-Field Calculation 15.3.3 Numerical Results Compared with Theory References 16 Chaos Theory of Random Recurrent Neural Networks 16.1 Spiking and Rate Models |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。