智慧设备识别--泛在电力物联网(英文版)(精)豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 智慧设备识别--泛在电力物联网(英文版)(精)
分类 电子书下载
作者 刘辉//于程名//吴海平
出版社 科学出版社
下载 暂无下载
介绍
内容推荐
在物联网迅速发展的当下,利用数据科学实现非侵入式的电气设备辨识对能源节约、机电控制技术发展等具有重要意义。本书详细介绍了设备辨识的智能分类方法,包括机器学习、深度学习、智能聚类、优化模型、集成学习、单标签和多标签识别模型等,并进行了大量的实验仿真对不同的设备辨识方法进行合理的评价,为数据科学技术在非侵入式设备识别中的发展提供了重要的参考。此外,本书还对传统的基于物理和模板匹配的解决方案进行了比较,并分析了智能设备辨识在工业中的巨大应用潜力,对智能设备辨识方法在工业中的应用有较高的参考价值。
目录
1 Introduction
1.1 Overview of Ubiquitous Electric Intemet of Things (UEIOT)
1.1.1 Features of Ubiquitous Electric Intemet of Things
1.1.2 Composition of Ubiquitous Electric Intemet of Things
1.1.3 Application Prospect and Value of Ubiquitous Electric Internet of Things
1.2 Key Techniques of UEIOT
1.2.1 Smart Electric Device Recognition
1.2.2 Intemet of Things
1.2.3 Big Data Analysis
1.2.4 Cloud Platforms
1.2.5 Computational Intelligence
1.2.6 Smart Model Embedding
1.2.7 Others
1.3 Smart Device Recognition in UEIOT
1.3.1 Data Acquisition Module
1.3.2 Event Detection Module
1.3.3 Feature Extraction Module
1.3.4 Load Identification Module
1.4 Different Strategies for Smart Device Recognition
1.4.1 Clustering Strategies for Device Recognition
1.4.2 Optimizing Strategies for Device Recognition
1.4.3 Ensemble Strategies for Device Recognition
1.4.4 Deep Learning Strategies for Device Recognition
1.5 Scope of the Book
References
2 Smart Non-intrusive Device Recognition Based on Physical Methods
2.1 Introduction
2.2 Device Recognition Method Based on Decision Tree
2.2.1 Evaluation Criteria
2.2.2 Basic Definitions of Physical Features
2.2.3 Original Dataset
2.2.4 The Theoretical Basis of Decision Tree
2.3 Device Recognition Method Based on Template Matching Method
2.3.1 The Basic Content of the Template Matching Method
2.3.2 Device Recognition Based on KNN Algorithm
2.3.3 Device Recognition Based on DTW Algorithm
2.4 Device Recognition Method Based On Current Decomposition
2.4.1 Introduction of the Current Decomposition Method
2.4.2 Physical Features of Current Decomposition
2.5 Experiment Analysis
2.5.1 Common Optimization Algorithms
2.5.2 Classification Results
2.5.3 Summary
References
3 Smart Non-intrusive Device Recognition Based on Intelfigent Single-Label Classification Methods
3.1 Introduction
3.2 Device Recognition Method Based on Support Vector Machine
3.2.1 Feature Extraction
3.2.2 Steps of the Model Based on SVM
3.2.3 Performance Evaluation
3.3 Device Recognition Method Based on Extreme Learning Machine
3.3.1 Data Process and Feature Extraction
3.3.2 Steps of the Model Based on Extreme Learning Machine
3.3.3 Performance Evaluation
3.4 Device Recognition Method Based on Artificial Neural Network
3.4.1 Data Process and Feature Extraction
3.4.2 Steps of the Multi-layer Perceptron Based Model
3.4.3 Performance Evaluation
3.5 Experiment Analysis
References
4 Smart Non-intrusive Device Recognition Based on Intelligent Multi-label Classification Methods
4.1 Introduction
4.1.1 Background
4.1.2 Dataset Used in the Chapter
4.2 Device Recognition Method Based on Ranking Support Vector Machine
4.2.1 Model Framework
4.2.2 Data Labeling
4.2.3 Feature Extraction and Reconstruction
4.2.4 The Basic Theory of the Ranking Support Vector Machine
4.2.5 Multi-label Classification Evaluation Indices
4.2.6 Evaluation of Ranking SVM in Terms of Multi-label Device Recognition
4.3 Device Recognition Method Based on Multi-label K-Nearest Neighbors Algorithm
4.3.1 Model Framework
4.3.2 Data Preprocessing
4.3.3 The Basic Theory of Multi-label K-Nearest Neighbors
4.3.4 Evaluation of MLKNN in Terms of Multi-label Device Recognition
4.4 Device Recognition Method Based on Multi-label Neural Networks
4.4.1 Model Framework
4.4.2 Preprocessing of the Raw Data
4.4.3 The Basic Theory of Backpropagation Multi-labe Learning
4.4.4 Evaluation of BPMLL in Terms of Multi-label Device Recognition
4.5 Experiment Analysis
References
5 Smart Non-intrusive Device Recognition Based on Intelligent
Clustering Methods
5.1 Introducti
截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me