网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 人工智能导论 |
分类 | |
作者 | 丁世飞编 |
出版社 | 电子工业出版社 |
下载 | ![]() |
简介 | 作者简介 目录 章绪论1 1.1人工智能的概念1 1.1.1智能的定义1 1.1.2人工智能的定义3 1.2人工智能的产生和发展5 1.2.1孕育期(20世纪50年代中期以前)5 1.2.2形成及个兴旺期(20世纪50年代中期至60年代中期)6 1.2.3萧条波折期(20世纪60年代中期至70年代中期)7 1.2.4第二个兴旺期(20世纪70年代中期至80年代中期)8 1.2.5稳步增长期(20世纪80年代中期至今)10 1.2.6中国的人工智能发展11 1.3人工智能的主要学派12 1.3.1符号主义学派12 1.3.2连接主义学派13 1.3.3行为主义学派14 1.4人工智能的主要研究内容14 1.5人工智能的主要应用领域17 小结24 习题124 第2章知识表示25 2.1知识表示概述25 2.1.1知识的概念25 2.1.2知识表示的概念26 2.2一阶谓词逻辑表示法27 2.2.1命题27 2.2.2谓词28 2.2.3谓词公式29 2.2.4谓词逻辑表示30 2.2.5谓词逻辑表示法的特点33 2.3产生式表示法33 2.3.1产生式表示的基本方法33 2.3.2产生式系统的基本结构35 2.3.3产生式系统的分类36 2.3.4产生式表示法的特点37 2.4语义网络表示法39 2.4.1语义网络的基本概念39 2.4.2语义网络的基本语义关系39 2.4.3语义网络表示知识的方法41 2.4.4语义网络的推理过程45 2.4.5语义网络表示法的特点46 2.5框架表示法46 2.5.1框架结构46 2.5.2框架表示48 2.5.3框架表示的推理过程50 2.5.4框架表示法的特点50 2.6脚本表示法50 2.7面向对象表示法54 小结56 习题257 第3章确定性推理59 3.1推理概述59 3.1.1推理的概念59 3.1.2推理的分类59 3.1.3推理的控制策略61 3.2推理的逻辑基础63 3.2.1谓词公式的永真性和可满足性63 3.2.2置换与合一65 3.3自然演绎推理68 3.4归结演绎推理69 3.4.1子句型69 3.4.2鲁滨逊归结原理72 3.4.3归结演绎推理的归结策略76 3.4.4 用归结原理求取问题的答案81 小结81 习题382 第4章搜索策略85 4.1搜索概述85 4.2一般图搜索86 4.2.1图搜索的基本概念86 4.2.2状态空间搜索87 4.2.3一般图搜索过程91 4.3盲目搜索92 4.3.1宽度优先搜索93 4.3.2深度优先搜索95 4.3.3有界深度搜索和迭代加深搜索97 4.3.4搜索最优策略的比较98 4.4启发式搜索99 4.4.1启发性信息和评估函数99 4.4.2启发式搜索A算法100 4.4.3实现启发式搜索的关键因素102 4.4.4A*算法103 4.4.5迭代加深A*算法106 4.5回溯搜索和爬山法107 4.5.1爬山法107 4.5.2回溯策略108 4.6问题规约109 4.7与/或图搜索111 4.7.1与/或图表示111 4.7.2与/或图的启发式搜索113 4.8博弈117 4.8.1极大极小过程119 4.8.2α-β过程121 小结122 习题4123 第5章不确定性推理125 5.1不确定性推理概述125 5.1.1不确定性推理的概念125 5.1.2知识不确定性的来源125 5.1.3不确定性推理要解决的基本问题126 5.1.4不确定性推理方法的分类128 5.2概率方法129 5.2.1概率论基础129 5.2.2经典概率方法130 5.2.3逆概率方法130 5.3主观贝叶斯方法132 5.3.1规则不确定性的表示132 5.3.2证据不确定性的表示134 5.3.3组合证据不确定性的计算135 5.3.4不确定性推理135 5.3.5结论不确定性的合成算法137 5.4确定性理论140 5.4.1可信度140 5.4.2CF模型142 5.4.3确定性方法的说明145 5.5证据理论146 5.5.1证据理论的形式描述147 5.5.2证据理论的推理模型150 5.5.3证据不确定性的表示152 5.5.4规则不确定性的表示152 5.5.5不确定性的推理152 5.5.6组合证据的不确定性计算152 5.6模糊推理155 5.6.1模糊数学的基本知识155 5.6.2模糊假言推理157 小结160 习题5161 第6章机器学习163 6.1机器学习概述163 6.1.1学习与机器学习163 6.1.2学习系统164 6.1.3机器学习的发展简史166 6.1.4机器学习的分类167 6.1.5机器学习的应用和研究目标168 6.2归纳学习169 6.2.1归纳学习的基本概念169 6.2.2变型空间学习171 6.2.3归纳偏置173 6.3决策树学习174 6.3.1决策树的组成及分类174 6.3.2决策树的构造算法CLS175 6.3.3基本的决策树算法ID3177 6.3.4决策树的偏置179 6.4基于实例的学习180 6.4.1k-近邻算法180 6.4.2距离加权最近邻法181 6.4.3基于范例的学习181 6.5强化学习186 6.5.1强化学习模型186 6.5.2马尔可夫决策过程187 6.5.3Q学习188 小结190 习题6191 第7章支持向量机193 7.1支持向量机概述193 7.2统计学习理论194 7.2.1学习问题的表示194 7.2.2期望风险和经验风险195 7.2.3VC维理论196 7.2.4推广性的界197 7.2.5结构风险最小化198 7.3支持向量机的构造199 7.3.1函数集结构的构造199 7.3.2支持向量机的模式200 7.4核函数203 7.4.1核函数概述203 7.4.2核函数的分类204 7.5SVM的算法及多类SVM205 7.6用于非线性回归的SVM206 7.7支持向量机的应用207 小结209 习题7209 第8章专家系统210 8.1专家系统概述210 8.1.1专家系统的特性210 8.1.2专家系统的结构和类型211 8.2基于规则的专家系统213 8.3基于框架的专家系统215 8.4基于模型的专家系统217 8.5专家系统的开发219 8.5.1专家系统的开发过程219 8.5.2专家系统的知识获取220 8.5.3专家系统的开发工具和环境222 8.6专家系统设计举例224 8.6.1专家知识的描述224 8.6.2知识的使用227 8.6.3决策的解释230 8.6.4MYCIN系统230 8.7新型专家系统231 小结233 习题8234 第9章神经计算235 9.1神经计算概述235 9.2感知器237 9.2.1感知器的结构237 9.2.2感知器的学习算法238 9.3反向传播网络240 9.3.1BP网络的结构240 9.3.2BP网络的学习算法241 9.4自组织映射神经网络244 9.4.1SOM网络结构244 9.4.2SOM网络的学习算法244 9.5Hopfield网络246 9.5.1离散Hopfield网络的结构246 9.5.2离散Hopfield网络的稳定性247 9.5.3离散Hopfield网络的学习算法247 9.6脉冲耦合神经网络248 9.6.1PCNN的结构248 9.6.2PCNN的学习算法249 9.7深度神经网络249 小结250 习题9251 0章进化计算252 10.1进化计算概述252 10.2遗传算法253 10.2.1遗传算法的基本原理253 10.2.2遗传算法的应用示例255 10.2.3模式定理257 10.2.4遗传算法的改进259 10.3进化规划260 10.3.1标准进化规划及其改进261 10.3.2进化规划的基本技术262 10.4进化策略263 10.4.1进化策略及其改进263 10.4.2进化策略的基本技术264 10.5GA、EP、ES的异同266 小结267 习题10267 1章模糊计算268 11.1模糊集合的概念268 11.1.1模糊集合的定义268 11.1.2模糊集合的表示方法268 11.2模糊集合的代数运算273 11.3正态模糊集和凸模糊集275 11.4模糊关系276 11.4.1模糊关系的概述276 11.4.2模糊关系的性质277 11.5模糊判决277 11.6模糊数学在模式识别中的应用278 11.6.1优选隶属度原则278 11.6.2择近原则279 小结280 习题11280 2章群智能282 12.1群智能概述282 12.1.1群智能优化算法定义282 12.1.2群智能优化算法原理283 12.1.3群智能优化算法特点283 12.2蚁群算法283 12.2.1蚁群算法概述283 12.2.2蚁群算法的数学模型284 12.2.3蚁群算法的改进286 12.2.4蚁群算法的应用示例287 12.3粒子群优化算法288 12.3.1粒子群优化算法基本思想288 12.3.2粒子群优化算法基本框架288 12.3.3粒子群优化算法参数分析与改进290 12.3.4粒子群优化算法的应用示例291 12.4其他群智能优化算法292 12.4.1人工鱼群算法292 12.4.2细菌觅食算法295 12.4.3混合蛙跳算法297 12.4.4果蝇优化算法298 小结299 习题12300 3章争论与展望301 13.1争论301 13.1.1对人工智能理论的争论301 13.1.2对人工智能方法的争论302 13.1.3对人工智能技术路线的争论302 13.1.4对强弱人工智能的争论303 13.2展望304 13.2.1更新的理论框架304 13.2.2更好的技术集成305 13.2.3更成熟的应用方法305 13.2.4脑机接口306 小结306 习题13307 附录A参考答案308 参考文献309 内容推荐 本书主要阐述人工智能的基本原理、方法和应用技术。全书共13章,除1章讨论人工智能基本概念、13章讨论人工智能的争论与展望外,其余11章按照“基本智能+典型应用+计算智能”三个模块编排内容。第一个模块为人工智能经典的三大技术,分别为知识表示技术、搜索技术和推理技术 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。