简介 |
![]()
内容推荐 作为作者获奖书Algebraic Theory of Quadratic Forms(W.A.Benjamin,Inc.,1973)的新版,《域上二次型引论(英文版)(精)》给出了在特征非2的任意域上的二次型理论的一个现代的、自足的导引。从线性代数及其以外的少量预备知识出发,作者构建了一个专属的课程,内容从二次型的Witt经典理论、四元数与Clifford代数、形式实域的Artin-Schreier理论、Witt环的结构定理,到Pfister形式理论、函数域和域不变量。这些主要进展与所涉及的Brauer-Wall群、局部与整体域、迹形式、Galois理论以及初等代数K-理论天衣无缝地交织在一起,对域上二次型理论做了一个独一无二的原创性处理。新版中增加了超过100页全新的两章,内容包括这个领域中更新的结果以及更加近代的观点。 从作者拉姆的写作特点来看,本书主要内容的陈述总是穿插着大量精心挑选的解释一般理论的例题。这个特点再加上全书十三章280多个内容丰富的习题,极大提升了本书的价值,使得本书可以作为代数、数论、代数几何、代数拓扑以及几何拓扑研究者的参考书。 目录 Preface Notes to the Reader Partial List of Notations Chapter I. Foundations 1. Quadratic Forms and Quadratic Spaces 2. Diagonalization of Quadratic Forms 3. Hyperbolic Plane and Hyperbolic Spaces 4. Decomposition Theorem and Cancellation Theorem 5. Witt's Chain Equivalence Theorem 6. Kronecker Product of Quadratic Spaces 7. Generation of the Orthogonal Group by Reflections Exercises for Chapter I Chapter II. Introduction to Witt Rings 1. Definition of W(F) and W(F) 2. Group of Square Classes 3. Some Elementary Computations 4. Presentation of Witt Rings 5. Classification of Small Witt Rings Exercises for Chapter II Chapter III. Quaternion Algebras and their Norm Forms 1. Construction of Quaternion Algebras 2. Quaternion Algebras as Quadratic Spaces 3. Coverings of the Orthogonal Groups 4. Linkage of Quaternion Algebras 5. Characterizations of Quaternion Algebras Exercises for Chapter III Chapter IV. The Brauer-Wall Group 1. The Brauer Group 2. Central Simple Graded Algebras (CSGA) 3. Structure Theory of CSGA 4. The Brauer-Wall Group Exercises for Chapter IV Chapter V. Clifford Algebras 1. Construction of Clifford Algebras 2. Structure Theorems 3. The Clifford Invariant, Witt Invariant, and Hasse Invariant 4. Real Periodicity and Clifford Modules 5. Composition of Quadratic Forms 6. Steinberg Symbols and Milnor's Group k2F Exercises for Chapter V Chapter VI. Local Fields and Global Fields 1. Springer's Theorem for C.D.V. Fields 2. Quadratic Forms over Local Fields Appendix: Nonreal Fields with Four Square Classes 3. Hasse-Minkowski Principle 4. Witt Ring of Q 5. Hilbert Reciprocity and Quadratic Reciprocity Exercises for Chapter VI Chapter VII. Quadratic Forms Under Algebraic Extensions 1. Scharlau's Transfer 2. Simple Extensions and Springer's Theorem 3. Quadratic Extensions 4. Scharlau's Norm Principle 5. Knebusch's Norm Principle 6. Galois Extensions and Trace Forms 7. Quadratic Closures of Fields Exercises for Chapter VII Chapter VIII. Formally Real Fields, Real-Closed Fields, and Pythagorean Fields 1. Structure of Formally Real Fields 2. Characterizations of Real-Closed Fields Appendix A: Uniqueness of Real-Closure Appendix B: Another Artin-Schreier Theorem 3. Pfister's Local-Global Principle 4. Pythagorean Fields Appendix: Fields with 8 Square Classes and 20rderings 5. Connections with Galois Theory 6. Harrison Topology on XF 7. Prime Spectrum of W(F) 8. Applications to the Structure of W(F) 9. An Introduction to Preorderings Exercises for Chapter VIII Chapter IX. Quadratic Forms under Transcendental Extensions 1. Cassels-Pfister Theorem 2. Second and Third Representation Theorems 3. Milnor's Exact Sequence for W(F(x)) 4. Scharlau's Reciprocity Formula for F(x) Exercises for Chapter IX Chapter X. Pfister Forms and Function Fields 1. Chain P-Equivalence Appendix: Round Forms 2. Multiplicative Forms 3. Introduction to Function Fields 4. Basic Theorems on Function Fields 5. Hanptsatz, Linkage, and Forms in InF 6. Milnor's Higher K-Groups Exercises for Chapter X Chapter XI. Field Invariants 1. Sums of Squares 2. The Level of a Field 3. Pfister-Witt Annihilator Theorem 4. The Property (An) 5. Height and Pythagoras Number 6. The u-Invariant of a Field Appendix: The General u-Invariant 7. The Size of W(F), and C-Fields Exercises for Chapter XI Chapter XII. Special Topics in Quadratic Forms 1. Isomorphisms of Witt Rings 2. Quadratic Forms of Low Dimension Appendix: Forms with Isomorphic Function Fields 3. Some Classification Theorems 4. Witt Rings under Biquadratic Extensions 5. Nonreal Fields with Eight Square Classes 6. Kaplansky Radical and Hilbert Fields 7. Construction of Some Pre-Hilbert Fields 8. Axiomatic Schemes for Q |