简介 |
![]()
内容推荐 从结构化和非结构化数据中预测分析发现隐藏的模式,可用于商业智能决策。 礼萨·卡里姆著的《TensorFlow预测分析(影印版)(英文版)》将通过在三个主要部分中运用Tensor Flow,帮助你构建、调优和部署预测模型。第一部分包括预测建模所需的线性代数、统计学和概率论知识。 第二部分包括运用监督(分类和回归)和无监督(聚类)算法开发预测模型。然后介绍如何开发自然语言处理(NLP)预测模型以及强化学习算法。最后.该部分讲述如何开发一个基于机器的因式分解推荐系统。 第三部分介绍高级预测分析的深度学习架构,包括深度神经网络以及高维和序列数据的递归神经网络。最终,使用卷积神经网络进行预测建模,用于情绪识别、图像分类和情感分析。 目录 Preface Chapter 1: Basic Python and Linear Algebra for Predictive Analytics A basic introduction to predictive analytics Why predictive analytics? Working principles of a predictive model A bit of linear algebra Programming linear algebra Installing and getting started with Python Installing on Windows Installing Python on Linux Installing and upgrading PIP (or PIP3) Installing Python on Mac OS Installing packages in Python Getting started with Python Python data types Using strings in Python Using lists in Python Using tuples in Python Using dictionary in Python Using sets in Python Functions in Python Classes in Python Vectors, matrices, and graphs Vectors Matrices Matrix addition Matrix subtraction Finding the determinant of a matrix Finding the transpose of a matrix Solving simultaneous linear equations Eigenvalues and eigenvectors Span and linear independence Principal component analysis Singular value decomposition Data compression in a predictive model using SVD Predictive analytics tools in Python Summary Chapter 2: Statistics, Probability, and Information Theory for Predictive Modeling Using statistics in predictive modeling Statistical models Parametric versus nonparametric model Population and sample Random sampling Expectation Central limit theorem Skewness and data distribution Standard deviation and variance Covariance and correlation Interquartile, range, and quartiles Hypothesis testing Chi-square tests Chi-square independence test Basic probability for predictive modeling Probability and the random variables Generating random numbers and setting the seed Probability distributions Marginal probability Conditional probability The chain rule of conditional probability Independence and conditional independence Bayes' rule Using information theory in predictive modeling Self-information Mutual information Entropy Shannon entropy Joint entropy Conditional entropy Information gain Using information theory …… Chapter 3: From Data to Decisions - Getting Started with TensorFlow Chapter 4: Putting Data in Place -Supervised Learning for Predictive Analvtics Chapter 5: Clustering Your Data - Unsupervised Learning for Predictive Analytics Chapter 6: Predictive Analytics Pipelines for NLP Chapter 7: Using Deep Neural Networks for Predictive Analytics Chapter 8: Using Convolutional Neural Networks for Predictive Analvtics Chapter 9: Using Recurrent Neural Networks for Predictive Analytics Chapter 10: Recommendation Systems for Predictive Analytics Chapter 11: Using Reinforcement Learning for Predictive Analytics
|