网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 C*-代数和有限维逼近(英文版)(精)/美国数学会经典影印系列
分类 科学技术-自然科学-数学
作者 (美)纳撒尼尔·布朗//(日)小泽登高
出版社 高等教育出版社
下载
简介
内容推荐
C*-逼近理论为算子代数的许多最重要的概念性突破和应用提供了基础。纳撒尼尔·布朗、小泽登高著的《C*-代数和有限维逼近(英文版)(精)》系统地研讨了(绝大多数)类型众多的近年来日益重要的逼近性质:核性、正合性、拟对角性、局部自返性,等等。另外,它还包含了对许多基本结果的易懂的证明,而这些结果之前难以从文献中获得。实际上,前十章最重要的新颖之处或许是作者充满热情地解释一些内容基础但却困难且需要技巧的结果,让读者理解起来尽可能不费力。书的后半部分讲述了相关专题和应用,目的是供研究人员以及受过良好训练的高年级学生参考。无论是渴望了解这个重要研究领域的基础知识的学生,还是想要一本C*-逼近的理论和应用方面综合参考书的研究人员,作者都尽力满足了他们的需求。
目录
Preface
Chapter 1. Fundamental Facts
1.1. Notation
1.2. C*-algebras
1.3. Von Neumann algebras
1.4. Double duals
1.5. Completely positive maps
1.6. Arveson's Extension Theorem
1.7. Voiculescu's Theorem
Part 1. Basic Theory
Chapter 2. Nuclear and Exact C*-Algebras: Definitions, Basic Facts and Examples
2.1. Nuclear maps
2.2. Nonunital technicalities
2.3. Nuclear and exact C*-algebras
2.4. First examples
2.5. C*-algebras associated to discrete groups
2.6. Amenable groups
2.7. Type I C*-algebras
2.8. References
Chapter 3. Tensor Products
3.1. Algebraic tensor products
3.2. Analytic preliminaries
3.3. The spatial and maximal C*-norms
3.4. Takesaki's Theorem
3.5. Continuity of tensor product maps
3.6. Inclusions and The Trick
3.7. Exact sequences
3.8. Nuclearity and tensor products
3.9. Exactness and tensor products
3.10. References
Chapter 4. Constructions
4.1. Crossed products
4.2. Integer actions
4.3. Amenable actions
4.4. X ) Γ-algebras
4.5. Compact group actions and graph C*-algebras
4.6. Cuntz-Pimsner algebras
4.7. Reduced amalgamated free products
4.8. Maps on reduced amalgamated free products
4.9. References
Chapter 5. Exact Groups and Related Topics
5.1. Exact groups
5.2. Groups acting on trees
5.3. Hyperbolic groups
5.4. Subgroups of Lie groups
5.5. Coarse metric spaces
5.6. Groupoids
5.7. References
Chapter 6. Amenable Traces and Kirchberg's Factorization Property
6.1. Traces and the right regular representation
6.2. Amenable traces
6.3. Some motivation and examples
6.4. The factorization property and Kazhdan's property (T)
6.5. References
Chapter 7. Quasidiagonal C*-Algebras
7.1. The definition, easy examples and obstructions
7.2. The representation theorem
7.3. Homotopy invariance
7.4. Two more examples
7.5. External approximation
7.6. References
Chapter 8. AF Embeddability
8.1. Stable uniqueness and asymptotically commuting diagrams
8.2. Cones over exact RFD algebras
8.3. Cones over general exact algebras
8.4. Homotopy invariance
8.5. A survey
8.6. References
Chapter 9. Local Reflexivity and Other Tensor Product Conditions
9.1. Local reflexivity
9.2. Tensor product properties
9.3. Equivalence of exactness and property C
9.4. Corollaries
9.5. References
Chapter 10. Summary and Open Problems
10.1. Nuclear C*-algebras
10.2. Exact C*-algebras
10.3. Quasidiagonal C*-algebras
10.4. Open problems
Part 2. Special Topics
Chapter 11. Simple C*-Algebras
11.1. Generalized inductive limits
11.2. NF and strong NF algebras
11.3. Inner quasidiagonality
11.4. Excision and Popa's technique
11.5. Connes's uniqueness theorem
11.6. References
Chapter 12. Approximation Properties for Groups
12.1. Kazhdan's property (T)
12.2. The Haagerup property
12.3. Weak amenability
12.4. Another approximation property
12.5. References
Chapter 13. Weak Expectation Property and Local Lifting Property
13.1. The local lifting property
13.2. Tensorial characterizations of the LLP and WEP
13.3. The QWEP conjecture
13.4. Nonsemisplit extensions
13.5. Norms on B(l2) B(l2)
13.6. References
Chapter 14. Weakly Exact von Neumann Algebras
14.1. Definition and examples
14.2. Characterization of weak exactness
14.3. References
Part 3. Applications
Chapter 15. Classification of Group von Neumann Algebras
15.1. Subalgebras with noninjective relative commutants
15.2. On bi-exactness
15.3. Examples
15.4. References
Chapter 16. Herrero's Approximation Problem
16.1.
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/2/23 5:36:10