网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | C*-代数和有限维逼近(英文版)(精)/美国数学会经典影印系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (美)纳撒尼尔·布朗//(日)小泽登高 |
出版社 | 高等教育出版社 |
下载 | ![]() |
简介 | 内容推荐 C*-逼近理论为算子代数的许多最重要的概念性突破和应用提供了基础。纳撒尼尔·布朗、小泽登高著的《C*-代数和有限维逼近(英文版)(精)》系统地研讨了(绝大多数)类型众多的近年来日益重要的逼近性质:核性、正合性、拟对角性、局部自返性,等等。另外,它还包含了对许多基本结果的易懂的证明,而这些结果之前难以从文献中获得。实际上,前十章最重要的新颖之处或许是作者充满热情地解释一些内容基础但却困难且需要技巧的结果,让读者理解起来尽可能不费力。书的后半部分讲述了相关专题和应用,目的是供研究人员以及受过良好训练的高年级学生参考。无论是渴望了解这个重要研究领域的基础知识的学生,还是想要一本C*-逼近的理论和应用方面综合参考书的研究人员,作者都尽力满足了他们的需求。 目录 Preface Chapter 1. Fundamental Facts 1.1. Notation 1.2. C*-algebras 1.3. Von Neumann algebras 1.4. Double duals 1.5. Completely positive maps 1.6. Arveson's Extension Theorem 1.7. Voiculescu's Theorem Part 1. Basic Theory Chapter 2. Nuclear and Exact C*-Algebras: Definitions, Basic Facts and Examples 2.1. Nuclear maps 2.2. Nonunital technicalities 2.3. Nuclear and exact C*-algebras 2.4. First examples 2.5. C*-algebras associated to discrete groups 2.6. Amenable groups 2.7. Type I C*-algebras 2.8. References Chapter 3. Tensor Products 3.1. Algebraic tensor products 3.2. Analytic preliminaries 3.3. The spatial and maximal C*-norms 3.4. Takesaki's Theorem 3.5. Continuity of tensor product maps 3.6. Inclusions and The Trick 3.7. Exact sequences 3.8. Nuclearity and tensor products 3.9. Exactness and tensor products 3.10. References Chapter 4. Constructions 4.1. Crossed products 4.2. Integer actions 4.3. Amenable actions 4.4. X ) Γ-algebras 4.5. Compact group actions and graph C*-algebras 4.6. Cuntz-Pimsner algebras 4.7. Reduced amalgamated free products 4.8. Maps on reduced amalgamated free products 4.9. References Chapter 5. Exact Groups and Related Topics 5.1. Exact groups 5.2. Groups acting on trees 5.3. Hyperbolic groups 5.4. Subgroups of Lie groups 5.5. Coarse metric spaces 5.6. Groupoids 5.7. References Chapter 6. Amenable Traces and Kirchberg's Factorization Property 6.1. Traces and the right regular representation 6.2. Amenable traces 6.3. Some motivation and examples 6.4. The factorization property and Kazhdan's property (T) 6.5. References Chapter 7. Quasidiagonal C*-Algebras 7.1. The definition, easy examples and obstructions 7.2. The representation theorem 7.3. Homotopy invariance 7.4. Two more examples 7.5. External approximation 7.6. References Chapter 8. AF Embeddability 8.1. Stable uniqueness and asymptotically commuting diagrams 8.2. Cones over exact RFD algebras 8.3. Cones over general exact algebras 8.4. Homotopy invariance 8.5. A survey 8.6. References Chapter 9. Local Reflexivity and Other Tensor Product Conditions 9.1. Local reflexivity 9.2. Tensor product properties 9.3. Equivalence of exactness and property C 9.4. Corollaries 9.5. References Chapter 10. Summary and Open Problems 10.1. Nuclear C*-algebras 10.2. Exact C*-algebras 10.3. Quasidiagonal C*-algebras 10.4. Open problems Part 2. Special Topics Chapter 11. Simple C*-Algebras 11.1. Generalized inductive limits 11.2. NF and strong NF algebras 11.3. Inner quasidiagonality 11.4. Excision and Popa's technique 11.5. Connes's uniqueness theorem 11.6. References Chapter 12. Approximation Properties for Groups 12.1. Kazhdan's property (T) 12.2. The Haagerup property 12.3. Weak amenability 12.4. Another approximation property 12.5. References Chapter 13. Weak Expectation Property and Local Lifting Property 13.1. The local lifting property 13.2. Tensorial characterizations of the LLP and WEP 13.3. The QWEP conjecture 13.4. Nonsemisplit extensions 13.5. Norms on B(l2) B(l2) 13.6. References Chapter 14. Weakly Exact von Neumann Algebras 14.1. Definition and examples 14.2. Characterization of weak exactness 14.3. References Part 3. Applications Chapter 15. Classification of Group von Neumann Algebras 15.1. Subalgebras with noninjective relative commutants 15.2. On bi-exactness 15.3. Examples 15.4. References Chapter 16. Herrero's Approximation Problem 16.1. |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。