由汉森编写的这本《纳米电子学基础(影印版)》是国外电子信息精品著作。全书共分10个章节,大致分为三个部分,包括:纳米物理学、单电子效应和多电子效应。本书内容丰富、论述详实,适用于大学工程和应用科学学生。
网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 纳米电子学基础(影印版)/国外电子信息精品著作 |
分类 | 科学技术-工业科技-电子通讯 |
作者 | (美)汉森 |
出版社 | 科学出版社 |
下载 | ![]() |
简介 | 编辑推荐 由汉森编写的这本《纳米电子学基础(影印版)》是国外电子信息精品著作。全书共分10个章节,大致分为三个部分,包括:纳米物理学、单电子效应和多电子效应。本书内容丰富、论述详实,适用于大学工程和应用科学学生。 内容推荐 由汉森编写的这本《纳米电子学基础(影印版)》分三个部分,分别在纳米物理学、单电子效应和多电子效应方面进行介绍,内容丰富、论述详实。书中有很多实验结果用来支持文中描述的物理概念,这使读者能够看到概念的真实性以及在实际技术中的重要应用,还有大量的章末问题能加强读者解决问题的能力。《纳米电子学基础(影印版)》是第一本真正适用于大学工程和应用科学学生的纳米电子学教科书。 目录 PREFACE PHOTO CREDITS PART I FUNDAMENTALS OF NANOSCOPIC PHYSICS 1 INTRODUCTION TO NANOELECTRONICS 1.1 The "Top-Down" Approach 5 1.1.1 Lithography, 6 1.2 The "Bottom-Up" Approach 11 1.3 Why Nanoelectronics? 11 1.4 Nanotechnology Potential 13 1.5 Main Points 14 1.6 Problems 15 2 CLASSICAL PARTICLES, CLASSICAL WAVES, AND QUANTUM PARTICLES 2.1 Comparison of Classical and Quantum Systems 17 2.2 Origins of Quantum Mechanics 19 2.3 Light as a Wave, Light as a Particle 20 2.3.1 Light as a Panicle, or Perhaps a Wave--The Early Years, 20 2.3.2 A Little Later--Light as a Wave, 20 2.3.3 Finally, Light as a Quantum Panicle, 24 2.4 Electrons as Particles, Electrons as Waves 27 2.4.1 Electrons as Particles--The Early Years, 27 2.4.2 A Little Later--Electrons (and Everything Else) as Quantum Panicles, 28 2.4.3 Further Development of Quantum Mechanics, 31 2.5 Wavepackets and Uncertainty 32 2.6 Main Points 40 2.7 Problems 41 3 QUANTUM MECHANICS OF ELECTRONS 3.1 General Postulates of Quantum Mechanics 45 3.1.1 Operators, 47 3.1.2 Eigenvalues and Eigenfunctions, 48 3.1.3 Hermitian Operators, 49 3.1.4 Operators for Quantum Mechanics, 52 3.1.5 Measurement Probability, 56 3.2 Time-Independent Schrodinger's Equation 62 3.2.1 Boundary Conditions on the Wavefunction, 65 3.3 Analogies Between Quantum Mechanics and Classical Electromagnetics 69 3.4 Probabilistic Current Density 71 3.5 Multiple Particle Systems 75 3.6 Spin and Angular Momentum 78 3.7 Main Points 80 3.8 Problems 81 4 FREE AND CONFINED ELECTRONS 4.1 Free Electrons 86 4.1.1 One-Dimensional Space, 87 4.1.2 Three-Dimensional Space, 89 4.2 The Free Electron Gas Theory of Metals 90 4.3 Electrons Confined to a Bounded Region of Space and Quantum Numbers 91 4.3.1 One-Dimensional Space, 91 4.3.2 Three-Dimensional Space, 97 4.3.3 Periodic Boundary Conditions, 98 4.4 Fermi Level and Chemical Potential 99 4.5 Partially Confined Electrons--Finite Potential Wells 101 4.5.1 Finite Rectangular Well, 102 4.5.2 Parabolic Well--Harmonic Oscillator, 109 4.5.3 Triangular Well, 110 4.6 Electrons Confined to Atoms--The Hydrogen Atom and the Periodic Table 111 4.6.1 The Hydrogen Atom and Quantum Numbers, 112 4.6.2 Beyond Hydrogen--Multiple Electron Atoms and the Periodic Table, 116 4.7 Quantum Dots, Wires, and Wells 118 4.7.1 Quantum Wells, 122 4.7.2 Quantum Wires, 124 4.7.3 Quantum Dots, 125 4,8 Main Points 127 4.9 Problems 127 5 ELECTRONS SUBJECT TO A PERIODIC POTENTIAL-BAND THEORY OF SOLIDS 5.1 Crystalline Materials 132 5.2 Electrons in a Periodic Potential 136 5.3 Kronig-Penney Model of Band Structure 137 5.3.1 Effective Mass, 141 5.4 Band Theory of Solids 150 5.4.1 Doping in Semiconductors, 154 5.4.2 Interacting Systems Model, 157 5.4.3 The Effect of an Electric Field on Energy Bands, 160 5.4.4 Bandstructures of Some Semiconductors, 160 5.4.5 Electronic Band Transitions--Interaction of Electromagnetic Energy and Materials, 162 5.5 Grapbene and Carbon Nanotubes 170 5.5.1 Graphene, 170 5.5.2 Carbon Nanotubes, 172 5.6 Main Points 176 5.7 Problems 177 PART II SINGLE-ELECTRON AND FEW-ELECTRON PHENOMENA AND DEVICES 6 TUNNEL JUNCTIONS AND APPLICATIONS OF TUNNELING 6.1 Tunneling Through a Potential Barrier 184 6.2 Potential Energy Profiles for Material Interfaces 190 6.2.1 Metal-Insulator, Metal-Semiconductor, and Metal-Insulator-Metal Junctions, 190 6.3 Applications of Tunneling 195 6.3.1 Field Emission, 195 6.3.2 Gate-Oxide Tunneling and Hot Electron Effects in MOSFETs, 198 6.3.3 Scanning Tunneling Microscope, 202 6.3.4 Double Barrier Tunneling and the Resonant Tunneling Diode, 206 6.4 Main Points 210 6.5 Problems 210 7 COULOMB BLOCKADE AND THE SINGLE-ELECTRON TRANSISTOR 7.1 Coulomb Blockade 212 7.1.1 Coulomb Blockade in a Nanocapacitor, 214 7.1.2 Tunnel Junctions, 219 7.1.3 Tunnel Junction Excited by a Current Source, 222 7.1.4 Coulomb Blockade in a Quantum Dot Circuit, 226 7.2 The Single-Electron Transistor 235 7.2.1 Single-Electron Transistor Logic, 243 7.3 Other SET and FET Structures 244 7.3.1 Carbon Nanotube Transistors (FETs and SETs), 244 7.3.2 Semiconductor Nanowire FETs and SETs, 249 7.3.3 Molecular SETs and Molecular Electronics, 251 7.4 Main Points 255 7.5 Problems 256 PART III MANY ELECTRON PHENOMENA 8 PARTICLE STATISTICS AND DENSITY OF STATES 8.1 Density of States 262 8.1.1 Density of States in Lower Dimensions, 264 8.1.2 Density of States in a Semiconductor, 267 8.2 Classical and Quantum Statistics 267 8.2.1 Carrier Concentration in Materials, 270 8.2.2 The Importance of the Fermi Electrons, 274 8.2.3 Equilibrium Carrier Concentration and the Fermi Level in Semiconductors, 274 8.3 Main Points 277 8.4 Problems 277 9 MODELS OF SEMICONDUCTOR QUANTUM WELLS, QUANTUM WIRES,AND QUANTUM DOTS 9.1 Semiconductor Heterostructures and Quantum Wells 282 9.1.1 Confinement Models and Two-Dimensional Electron Gas, 285 9.1.2 Energy Band Transitions in Quantum Wells, 288 9.2 Quantum Wires and Nanowires 294 9.3 Quantum Dots and Nanoparticles 298 9.3.1 Applications of Semiconducting Quantum Dots, 299 9.3.2 Plasmon Resonance and Metallic Nanoparticles, 304 9.3.3 Functionalized Metallic Nanoparticles, 306 9.4 Fabrication Techniques for Nanostructures 307 9.4.1 Lithography, 307 9.4.2 Nanoimprint Lithography, 309 9.4.3 Split-Gate Technology, 310 9.4.4 Self-Assembly, 312 9.5 Main Points 313 9.6 Problems 314 10 NANOWIRES, BALLISTIC TRANSPORT, AND SPIN TRANSPORT 10.1 Classical and Semiclassical Transport 318 10.1.1 Classical Theory of Conduction--Free Electron Gas Model, 318 10.1.2 Semiclassical Theory of Electrical Conduction--Fermi Gas Model, 321 10.1.3 Classical Resistance and Conductance, 324 10.1.4 Conductivity of Metallic Nanowires--The Influence of Wire Radius, 326 10.2 Ballistic Transport 328 10.2.1 Electron Collisions and Length Scales, 329 10.2.2 Ballistic Transport Model, 331 10.2.3 Quantum Resistance and Conductance, 332 10.2.4 Origin of the Quantum Resistance, 340 10.3 Carbon Nanotubes and Nanowires 341 10.3.1 The Effect of Nanoscale Wire Radius on Wave Velocity and Loss, 344 10.4 Transport of Spin, and Spintronics 346 10.4.1 The Transport of Spin, 347 10.4.2 Spintronic Devices and Applications, 351 10.5 Main Points 352 10.6 Problems 353 APPENDIX A SYMBOLS AND ACRONYMS APPENDIX B PHYSICAL PROPERTIES OF MATERIALS APPENDIX C CONVENTIONAL MOSFETS APPENDIX D ANSWERS TO PROBLEMS Problems Chapter 2: Classical Particles, Classical Waves, and Quantum Particles, 366 Problems Chapter 3: Quantum Mechanics of Electrons, 367 Problems Chapter 4: Free and Confined Electrons, 367 Problems Chapter 5: Electrons Subject to a Periodic Potential--Band Theory of Solids, 369 Problems Chapter 6: Tunnel Junctions and Applications of Tunneling, 369 Problems Chapter 7: Coulomb Blockade and the Single-Electron Transistor, 370 Problems Chapter 8: Particle Statistics and Density of States, 370 Problems Chapter 9: Models of Semiconductor Quantum Wells, Quantum Wires,and Quantum Dots, 370 Problems Chapter 10: Nanowires, Ballistic Transport, and Spin Transport, 371 REFERENCES INDEX |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。