《高级回归分析》主要介绍了回归分析方法的最新内容,并介绍了其中蕴含的统计思想及其应用。全书不仅系统地阐述了回归分析的经典内容,而且还介绍了近年来回归分析领域的许多新思想和新发展,讲述了模型建立、直觉逻辑等各方法的前提假设,以及这些方法的目标、优缺点及详细说明。在叙述基本概念及理论的同时,作者力求反映该领域当前最流行的思想。
本书由吴晓刚担任主编。
《高级回归分析》由5本讨论高级回归分析的小册子组成,分别是《固定效应回归模型》、《现代稳健回归方法》、《删截、选择性样本及截断数据回归模型》、《分位数回归模型》及《空间回归模型》。《固定效应回归模型》介绍了多种形式的固定效应回归模型,讨论了如何在固定效应模型及随机效应模型之间作出选择;《现代稳健回归方法》通过一套统一的符号系统,介绍了不同来源的多种稳健回归方法,以及它们彼此之间的联系;《删截、选择性样本及截断数据回归模型》是有关删截数据、选择性样本数据及截断数据的最新研究;《分位数回归模型》提出了分位数和分位数函数的概念,阐述了分位数回归模型,讨论了它们的估计和推断方法,并通过具体的例子演示了对分位数回归估计值的解释;《空间回归模型》介绍了两种应用最广泛的空间回归模型:空间定距因变量和空间性误差模型。
《高级回归分析》由吴晓刚担任主编。