李忠著的《拟共形映射与Teichmuller空间》全书共分十一章,内容包括:拟共形映射的定义与性质,拟共形映射的存在定理,偏差定理,拟圆周,拟共形映射与单叶函数,Riemann曲面上的拟共形映射,闭Riemann曲面上的极值问题,Riemann曲面的模问题与Teichmuller空间,有限型Riemann曲面上的Teichmuller空间,Bers有界嵌入定理与Teichmuller空间的复结构,开Riemann曲面上的Teichmuller理论。
李忠著的《拟共形映射与Teichmuller空间》是为综合大学、高等师范院校数学专业研究生基础课编写的教材,主要讲述拟共形映射与Teichmuller空间的基础知识、基本理论及其近代重要进展。
全书共分十一章,内容包括:拟共形映射的定义与性质,拟共形映射的存在定理,偏差定理,拟圆周,拟共形映射与单叶函数,Riemann曲面上的拟共形映射,闭Riemann曲面上的极值问题,Riemann曲面的模问题与Teichmuller空间,有限型Riemann曲面上的Teichmuller空间,Bers有界嵌入定理与Teichmuller空间的复结构,开Riemann曲面上的Teichmuller理论。
《拟共形映射与Teichmuller空间》在取材上,更关注Teichmuller理论的基本理论与基本问题的讨论,而不试图涵盖当代全部进展,也不追求问题的“最一般性”。本书注意了材料的自足性与内容上的循序渐进,证明严谨,叙述详实,便于读者自学。
本书可作为高等院校数学专业复分析、几何拓扑、几何分析,以及数学物理等研究方向研究生的教材或研究参考书,也可供数学工作者阅读和参考。
第一章 拟共形映射的定义与性质
第二章 拟共形映射的存在性定理
第三章 偏差定理
第四章 拟圆周
第五章 拟共形映射与单叶函数
第六章 Riemann曲面上的拟共形映射
第七章 闭Riemann曲面上的极值问题
第八章 Riemann曲面的模问题与Teichmuller空间
第九章 有限型Riemann曲面上的Teichmuller空间
第十章 Bers有界嵌入定理与Teichmuller空间的复结构
第十一章 开Riemann曲面上的Teichmuller理论
符号说明
名词索引
参考文献