网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 半单群的表示论(第2卷)
分类 科学技术-自然科学-数学
作者 (美)纳普
出版社 世界图书出版公司
下载
简介
编辑推荐

由纳普编著的《半单群的表示论》是一部经典的著作,分为上下两卷,前十章为上卷,后六章为下卷。书中讲述半单李群表示理论的方式给出了本科目的精华,符合学习的自然规律。定理陈述地相当详细,增加了许多经典的解释性例子。本章末都有习题,对于学习研究生和科研工作者相当有用。目次:理论概述;su(2),su(2,r)和su(2,c)表示论;c∞向量和通用包络代数;紧李群表示论;非紧群的理论;全纯离散系列;导出表示论;可允许表示论;离散系列的结构;全局性质;plancherel公式;不可约表示论;最小k型;酉表示;附录:李群的基本理论;偏微分方程的常规奇异点;经典群的根和受限根。

读者对象:数学专业的研究生和相关的科研人员。

目录

PREFACE TO THE PRINCETON LANDMARKS IN

MATHEMATICS EDITION

PREFACE

ACKNOWLEDGMENTS

CHAPTER Ⅰ.SCOPE OF THE THEORY

 §1.The Classical Groups

 §2.Cartan Decomposition

 §3.Representations

 §4.Concrete Problems in Representation Theory

 §5.Abstract Theory for Compact Groups

 §6.Application of the Abstract Theory to Lie Groups

 §7.Problems

CHAPTER Ⅱ.REPRESENTATIONS OF SU(2), SL(2, R), AND SL(2, C)

 §1.The Unitary Trick

 §2.Irreducible Finite-Dimensional Complex-Linear Representations of el(2, C)

 §3.Finite-Dimensional Representations of sl(2, C)

 §4.Irreducible Unitary Representations of SL(2, C)

 §5.Irreducible Unitary Representations of SL(2, R)

 §6.Use of SU(1, 1)

 §7.Plancherel Formula

 §8.Problems

CHAPTER Ⅲ.C∞ VECTORS AND THE UNIVERSAL ENVELOPING ALGEBRA

 §1.Universal Enveloping Algebra

 §2.Actions on Universal Enveloping Algebra

 §3.C∞ Vectors

 §4.Garding Subspace

 §5.Problems

CHAPTER Ⅳ.REPRESENTATIONS OF COMPACT LIE GROUPS

 §1.Examples of Root Space Decompositions

 §2.Roots

 §3.Abstract Root Systems and Positivity

 §4.Weyl Group, Algebraically

 §5.Weights and Integral Forms

 §6.Centalizers of Tori

 §7.Theorem of the Highest Weight

 §8.Verma Modules

 §9.Weyl Group, Analytically

 §10.Weyl Character Formula

 §11.Problems

CHAPTER Ⅴ.STRUCTURE THEORY FOR NONCOMPACT GROUPS

 §1.Cartan Decomposition and the Unitary Trick

 §2.Iwasawa Decomposition

 §3.Regular Elements, Weyl Chambers, and the Weyl Group

 §4.Other Decompositions

 §5.Parabolic Subgroups

 §6.Integral Formulas

 §7.Borel-Weil Theorem

 §8.Problems

CHAPTER Ⅵ.HOLOMORPHIC DISCRETE SERIES

 §1.Holomorphic Discrete Series for SU(1, 1)

 §2.Classical Bounded Symmetric Domains

 §3.Harish-Chandra Decomposition

 §4.Holomorphic Discrete Series

 §5.Finiteness of an Integral

 §6.Problems

CHAPTER Ⅶ.INDUCED REPRESENTATIONS

 §1.Three Pictures

 §2.Elementary Properties

 §3.Bruhat Theory

 §4.Formal Intertwining Operators

 §5.Gindikin-Karpelevic Formula

 §6.Estimates on Intertwining Operators, Part Ⅰ

 §7.Analytic Continuation of Intertwining Operators,Part Ⅰ

 §8.Spherical Functions

 §9.Finite-Dimensional Representations and the H function

 §10.Estimates on Intertwining Operators, Part Ⅱ

 §11.Tempered Representations and Langlands Quotients

 §12.Problems

CHAPTER Ⅷ.ADMISSIBLE REPRESENTATIONS

 §1.Motivation

 §2.Admissible Representations

 §3.Invariant Subspaces

 §4.Framework for Studying Matrix Coefficients

 §5.Harish-Chandra Homomorphism

 §6.Infinitesimal Character

 §7.Differential Equations Satisfied by Matrix Coefficients

 §8.Asymptotic Expansions and Leading Exponents

 §9.First Application: Subrepresentation Theorem

 §10.Second Application: Analytic Continuation of lnterwining Operators, ParⅡ

 §11.Third Application: Control of K-Finite Z(gC)-Finite Functions

 §12.Asymptotic Expansions near the Walls

 §13.Fourth Application: Asymptotic Size of Matrix Coefficients

 §14.Fifth Application: Identification of Irreducible Tempered Representations

 §15.Sixth Application: Langlands Classification of Irreducible Admissible Representations

 §16.Problems

CHAPTER Ⅸ.CONSTRUCTION OF DISCRETE SERIES

 §1.Infinitesimally Unitary Representations

 §2.A Third Way of Treating Admissible Representations

 §3.Equivalent Definitions of Discrete Series

 §4.Motivation in General and the Construction in SU(1, 1)

 §5.Finite-Dimensional Spherical Representations

 §6.Duality in the General Case

 §7.Construction of Discrete Series

 §8.Limitations on K Types

 §9.Lemma on Linear Independence

 §10.Problems

CHAPTER Ⅹ.GLOBAL CHARACTERS

 §1.Existence

 §2.Character Formulas for SL(2, R)

 §3.Induced" Characters

 §4.Differential Equations

 §5.Analyticity on the Regular Set, Overview and Example

 §6.Analyticity on the Regular Set, General Case

 §7.Formula on the Regular Set

 §8.Behavior on the Singular Set

 §9.Families of Admissible Representations

 §10.Problems

CHAPTER Ⅺ.INTRODUCTION TO PLANCHEREL FORMULA

 §1.Constructive Proof for SU(2)

 §2.Constructive Proof for SL(2, C)

 §3.Constructive Proof for SL(2, R)

 §4.Ingredients of Proof for General Case

 §5.Scheme of Proof for General Case

 §6.Properties of Ft

 §7.Hirai's Patching Conditions

 §8.Problems

CHAPTER Ⅻ.EXHAUSTION OF DISCRETE SERIES

 §1.Boundedness of Numerators of Characters

 §2.Use of Patching Conditions

 §3.Formula for Discrete Series Characters

 §4.Schwartz Space

 §5.Exhaustion of Discrete Series

 §6.Tempered Distributions

 §7.Limits of Discrete Series

 §8.Discrete Series of M

 §9.Schmid's Identity

 §10.Problems

CHAPTER ⅫⅠ.PLANCHEREL FORMULA

 §1.Ideas and Ingredients

 §2.Real-Rank-One Groups, Part I

 §3.Real-Rank-One Groups, Part II

 §4.Averaged Discrete Series

 §5.Sp (2, R)

 §6..General Case

 §7.Problems

CHAPTER ⅪⅤ.IRREDUCIBLE TEMPERED REPRESENTATIONS

 §1.SL(2, R) from a More General Point of View

 §2.Eisenstein Integrals

 §3.Asymptotics of Eisenstein Integrals

 §4.The n Functions for Intertwining Operators

 §5.First Irreducibility Results

 §6.Normalization of Intertwining Operators and Reducibility

 §7.Connection with Plancherel Formula when dim A = 1

 §8.Harish-Chandra's Completeness Theorem

 §9.R Group

 §10.Action by Weyl Group on Representations of M

 §11.Multiplicity One Theorem

 §12.Zuckerman Tensoring of Induced Representations

 §13.Generalized Schmid Identities

 §14.Inversion of Generalized Schmid Identities

 §15.Complete Reduction of Induced Representations

 §16.Classification

 §17.Revised Langlands Classification

 §18.Problems

CHAPTER ⅩⅤ.MINIMAL K TYPES

 §1.Definition and Formula

 §2.Inversion Problem

 §3.Connection with Intertwining Operators

 §4.Problems

CHAPTERⅩⅥ.UNITARY REPRESENTATIONS

 §1.SL(2, R) and SL(2, C)

 §2.Continuity Arguments and Complementary Series

 §3.Criterion for Unitary Representations

 §4.Reduction to Real Infinitesimal Character

 §5.Problems

APPENDIX A: ELEMENTARY THEORY OF LIE GROUPS

 §1.Lie Algebras

 §2.Structure Theory of Lie Algebras

 §3.Fundamental Group and Covering Spaces

 §4.Topological Groups

 §5.Vector Fields and Submanifolds

 §6.Lie Groups

APPENDIX B:REGULAR SINGULAR POINTS OF PARTIAL DIFFERENTIAL EQUATIONS

 §1.Summary of Classical One-Variable Theory

 §2.Uniqueness and Analytic Continuation of Solutions in Several Variables

 §3.Analog of Fundamental Matrix

 §4.Regular Singularities

 §5.Systems of Higher Order

 §6.Leading Exponents and the Analog of the Indicial Equation

 §7.Uniqueness of Representation

APPENDIX C: ROOTS AND RESTRICTED ROOTS FOR CLASSICAL GROUPS

 §1.Complex Groups

 §2.Noncompact Real Groups

 §3.Roots vs.Restricted Roots in Noncompact Real Groups

NOTES

REFERENCES

INDEX OF NOTATION

INDEX

随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/4/6 19:17:32