模型参数估计的反问题理论与方法(影印版)(精)/国外数学名著系列豆瓣PDF电子书bt网盘迅雷下载电子书下载-霍普软件下载网

网站首页   软件下载   游戏下载   翻译软件   电子书下载   电影下载   电视剧下载   教程攻略   音乐专区

请输入您要查询的图书:

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

电子书 模型参数估计的反问题理论与方法(影印版)(精)/国外数学名著系列
分类 电子书下载
作者 (意)塔兰托拉
出版社 科学出版社
下载 暂无下载
介绍
编辑推荐

Prompted by recent developments in inverse theory, Inverse Problem Theory and Methods for Model Parameter Estimation is a completely rewritten version of a 1987 book by the same author. In this version there are many algorithmic details for Monte Carlo methods, leastsquares discrete problems, and least-squares problems involving functions. In addition, some notions are clarified, the role of optimization techniques is underplayed, and Monte Carlo methods are taken much more seriously. The first part of the book deals exclusively with discrete inverse problems with afinite number of parameters, while the second part of the book deals with general inverse problems.

...

目录

Preface

1  The General Discrete Inverse Problem

  1.1  Model Space and Data Space

  1.2  States of Information

  1.3  Forward Problem

  1.4  Measurements and A Priori Information

  1.5  Defining the Solution of the Inverse Problem

  1.6  Using the Solution of the Inverse Problem

2  Monte Carlo Methods

  2.1  Introduction

  2.2  The Movie Strategy for Inverse Problems

  2.3  Sampling Methods

  2.4  Monte Carlo Solution to Inverse Problems

 2.5  Simulated Annealing

3  The Least-Squares Criterion

 3.1  Preamble: The Mathematics of Linear Spaces

 3.2  The Least-Squares Problem

 3.3  Estimating Posterior Uncertainties

 3.4  Least-Squares Gradient and Hessian

4  Least-Absolute-Values Criterion and Minimax Criterion

 4.1  Introduction

 4.2  Preamble:ln-Norms

 4.3  The ln-Norm Problem

 4.4  The l1-Norm Criterion for Inverse Problems

 4.5  The ln-Norm Criterion for Inverse Problems

5  Functional Inverse Problems

 5.1  Random Functions

 5.2  Solution of General Inverse Problems

 5.3  Introduction to Functional Least Squares

 5.4  Derivative and Transpose Operators in Functional Spaces

 5.5  General Least-Squares Inversion

 5.6  Example: X-Ray Tomography as an Inverse Problem

 5.7  Example: Travel-Time Tomography

 5.8  Example: Nonlinear Inversion of Elastic Waveforms

6  Appendices

 6.1  Volumetric Probability and Probability Density

 6.2  Homogeneous Probability Distributions

 6.3  Homogeneous Distribution for Elastic Parameters

 6.4  Homogeneous Distribution for Second-Rank Tensors

 6.5  Central Estimators and Estimators of Dispersion

 6.6  Generalized Gaussian

 6.7  Log-Normal Probability Density

 6.8  Chi-Squared Probability Density

 6.9  Monte Carlo Method of Numerical Integration

 6.10  Sequential Random Realization

 6.11  Cascaded Metropolis Algorithm

 6.12  Distance and Norm

 6.13  The Different Meanings of the Word Kernel

 6.14  Transpose and Adjoint of a Differential Operator

 6.15  The Bayesian Viewpoint of Backus (1970)

 6.16  The Method of Backus and Gilbert

 6.17  Disjunction and Conjunction of Probabilities

 6.18  Partition of Data into Subsets

 6.19  Marginalizing in Linear Least Squares

 6.20  Relative Information of Two Gaussians

 6.21  Convolution of Two Gaussians

 6.22  Gradient-Based Optimization Algorithms

 6.23  Elements of Linear Programming

 6.24  Spaces and Operators

 6.25  Usual Functional Spaces

 6.26  Maximum Entropy Probability Density

 6.27  Two Properties of ln-Norms

 6.28  Discrete Derivative Operator

 6.29  Lagrange Parameters

 6.30  Matrix Identities

 6.31  Inverse of a Partitioned Matrix

 6.32  Norm of the Generalized Gaussian

7  Problems

 7.1  Estimation of the Epicentral Coordinates of a Seismic Event

 7.2  Measuring the Acceleration of Gravity

 7.3  Elementary Approach to Tomography

 7.4  Linear Regression with Rounding Errors

 7.5  Usual Least-Squares Regression

 7.6  Least-Squares Regression with Uncertainties in Both Axes

 7.7  Linear Regression with an Outlier

 7.8  Condition Number and A Posteriori Uncertainties

 7.9  Conjunction of Two Probability Distributions

 7.10  Adjoint of a Covariance Operator

 7.11  Problem 7.1 Revisited

 7.12  Problem 7.3 Revisited

 7.13  An Example of Partial Derivatives

 7.14  Shapes of the ln-Norm Misfit Functions

 7.15  Using the Simplex Method

 7.16  Problem 7.7 Revisited

 7.17  Geodetic Adjustment with Outliers

 7.18  Inversion of Acoustic Waveforms

 7.19  Using the Backus and Gilbert Method

 7.20  The Coefficients in the Backus and Gilbert Method

 7.21  The Norm Associated with the 1D Exponential Covariance

 7.22  The Norm Associated with the 1D Random Walk

 7.23  The Norm Associated with the 3D Exponential Covariance

References and References for General Reading

Index

截图
随便看

免责声明
本网站所展示的内容均来源于互联网,本站自身不存储、不制作、不上传任何内容,仅对网络上已公开的信息进行整理与展示。
本站不对所转载内容的真实性、完整性和合法性负责,所有内容仅供学习与参考使用。
若您认为本站展示的内容可能存在侵权或违规情形,请您提供相关权属证明与联系方式,我们将在收到有效通知后第一时间予以删除或屏蔽。
本网站对因使用或依赖本站信息所造成的任何直接或间接损失概不承担责任。联系邮箱:101bt@pm.me