A major goal of the pattern recognition is to find methods that could provide some distortion-invariant recognition, i.e. the detection process has low sensitivity to the deformations of input objects. Typically, three deformations are considered: position, rotation, and scale changes of the input.
In this book, the emphases of the research are two invariances: rotation invariant texture classification and scale invariant pattern recognition.
本书研究的重点是旋转不变纹理分类和尺度不变模式识别。对旋转不变纹理分类的研究,我们提出了两种新方法,即基于Gabor小波的旋转不变纹理分类方法和基于圆形Gabor小波的旋转不变纹理分类方法。同时为了测定旋转纹理的角度,我们又提出了一种基于相位一致性的方向估计算法。对尺度不变模式识别的研究,我们提出了基于经验模态分解和梅林径向调和分解的方法。
本书可作为模式识别、图像处理及相近专业的研究生和专业人员的教材或参考书。
Chapter Ⅰ Introduction
1.1 Background
1.2 The Problem of Invariance
1.3 Scope of the Research and Contribution of this Book
1.4 The Mathematical Background
1.5 Organization of This Book
1.6 Summary
Chapter Ⅱ Review of the Previous Works
2.1 Review of Rotation Invariant Texture Classification
2.2 Review of the Correlation Filters about Scale Invariant Pattern Recognition
2.3 Summary
Chapter Ⅲ The Proposed Invariant Methods
3.1 Proposed Rotation Invariant Texture Classification Methods[170,171,173,174]
3.2 Proposed Orientation Estimation Method[172]
3.3 Proposed Scale Invariant Pattern Recognition Method[168,169]
3.4 Summary
Chapter Ⅳ Experimental Results and Analysis
4.1 Experiments for Rotation Invariant Texture Classification
4.2 Experiments for Orientation Estimation
4.3 Experiments for Scale Invariant Pattern Recognition
4.4 Summary
Chapter Ⅴ Conclusion
5.1 Rotation-invariant texture classification Using Gabor wavelet
5.2 Rotation-Invariant Texture Classification Using Circular Gabor Wavelets
5.3 Orientation estimat on from phase congruency
5.4 Scale Invariant Pattern Recofnition
Reference